

Exploring attributes, sequences, and time in Recommender Systems: From classical to Point-of-Interest recommendation

Pablo Sánchez Pérez

Under the supervision of Alejandro Bellogín Kouki

Information Retrieval Group Department of Computer Science Universidad Autónoma de Madrid, Spain

July 8, 2021

PhD dissertation July 8, 2021 ATTRIBUTES, SEQUENCES, AND TIME IN RS 1/82

- 2 New perspectives for evaluating Recommender Systems
- 3 Sequences in k-NN recommender systems
- Point-Of-Interest recommendation
- **5** Sequences in POI recommendation
- 6 Conclusions and future work

- New perspectives for evaluating Recommender Systems
- \bigcirc Sequences in k-NN recommender systems
- Point-Of-Interest recommendation
- **Sequences in POI recommendation**
- 6 Conclusions and future work

1/82

э

► 4 Ξ ►

1/82

Ξ

→ Ξ →

 U
 I
 Recommendations

Image: Second second

(4 間) トイヨト イヨト

Ξ

	i_1	i_2	i_3	i_4	
u_1	-	-	-	3	
u_2	4	-	4	-	
u_3	5	5	-	-	
u_4	-	2	1	-	
u_5	-	-	-	-	
u_6	-	-	-	1	

Sparsity $\sim 99\%$

(4 間) トイヨト (4 ヨト)

Ξ

	i_1	i_2	i_3	i_4	
u_1	-	-	-	3	
u_2	4	-	4	-	
u_3	5	5	-	-	
u_4	-	2	1	-	
u_5	-	-	-	-	
u_6	-	-	-	1	

Objective: maximize the usefulness of the items for the target user $(\max g(u, i))$

$$i^{*}(u) = \arg \max_{i \in \mathcal{I}} g(u, i)$$
 (1)
--[Adomavicius and Tuzhilin, 2005]

Ξ

$$i^*(u) = \arg \max_{i \in \mathcal{I}} g(u, i)$$
 (1)
—[Adomavicius and Tuzhilin, 2005]

• Domains: movies, Point-of-Interest, music, dates, ...

$$i^{*}(u) = \arg \max_{i \in \mathcal{I}} g(u, i)$$
 (1)
--[Adomavicius and Tuzhilin, 2005]

- Domains: movies, Point-of-Interest, music, dates, ...
- Types of Recommender Systems: content-based, collaborative filtering, hybrids, demographic, knowledge-based

$$i^*(u) = \arg\max_{i \in \mathcal{I}} g(u, i) \tag{1}$$

-[Adomavicius and Tuzhilin, 2005]

- Domains: movies, Point-of-Interest, music, dates, ...
- Types of Recommender Systems: content-based, collaborative filtering, hybrids, demographic, knowledge-based
- Contextual information: temporal, sequential, geographical, social, weather, ...

$$i^*(u) = \arg\max_{i \in \mathcal{I}} g(u, i) \tag{1}$$

-[Adomavicius and Tuzhilin, 2005]

- Domains: movies, Point-of-Interest, music, dates, ...
- Types of Recommender Systems: content-based, collaborative filtering, hybrids, demographic, knowledge-based
- Contextual information: **temporal**, **sequential**, **geographical**, social, weather, ...
- Evaluation: offline, online, user studies

$$i^*(u) = \arg\max_{i \in \mathcal{I}} g(u, i) \tag{1}$$

-[Adomavicius and Tuzhilin, 2005]

- Domains: movies, Point-of-Interest, music, dates, ...
- Types of Recommender Systems: content-based, collaborative filtering, hybrids, demographic, knowledge-based
- Contextual information: **temporal**, **sequential**, **geographical**, social, weather, ...
- Evaluation: offline, online, user studies
- More information: Chapter 2

→ ∃ →

• Metrics:

• Error metrics (rating prediction): MAE, RMSE, ...

$$RMSE = \sqrt{\frac{1}{|\mathcal{R}_{test}|} \sum_{r_{ui} \in \mathcal{R}_{test}} (\hat{r}(u, i) - r_{ui})^2}$$
(2)

- Metrics:
 - Error metrics (rating prediction): MAE, RMSE, ...
 - Ranking Accuracy (top-n evaluation): Precision (P), Recall (R), nDCG, ...

$$\text{RMSE} = \sqrt{\frac{1}{|\mathcal{R}_{test}|} \sum_{r_{ui} \in \mathcal{R}_{test}} (\hat{r}(u, i) - r_{ui})^2}$$
(2)

$$P@k(u) = \frac{Rel_u@k}{k}$$
(3)

- Metrics:
 - Error metrics (rating prediction): MAE, RMSE, ...
 - Ranking Accuracy (top-n evaluation): Precision (P), Recall (R), nDCG, ...
 - Novelty and diversity: Item Coverage (IC), Gini, EPC, ...

$$RMSE = \sqrt{\frac{1}{|\mathcal{R}_{test}|} \sum_{r_{ui} \in \mathcal{R}_{test}} (\hat{r}(u, i) - r_{ui})^2}$$
(2)

$$P@k(u) = \frac{Rel_u@k}{k}$$
(3)

$$IC = \left| \bigcup_{u \in \mathcal{U}} R_u \right| \tag{4}$$

(4 間) トイヨト イヨト

Ξ

Recommender Systems: types of data splitting

Recommender Systems: types of data splitting

Recommender Systems: types of data splitting

- RO1: Integrating additional dimensions beyond relevance in evaluation metrics
 - We use temporal information, attributes, and low ratings for evaluating the recommenders
 - We obtain more complete results of the performance of the recommenders and we detect additional biases

- RO1: Integrating additional dimensions beyond relevance in evaluation metrics
 - We use temporal information, attributes, and low ratings for evaluating the recommenders
 - We obtain more complete results of the performance of the recommenders and we detect additional biases
- RO2: Incorporate sequentiality in neighborhood-based recommenders
 - We develop a sequential similarity metric and we redefine the formulation of *k*-NN recommenders
 - Our approaches are highly competitive in relevance, novelty and diversity

- RO3: Review the state-of-the-art on Point-of-Interest Recommender Systems
 - We characterize POI recommendation works between 2011 and 2019 analyzing the algorithms, the information, and the evaluation methodology used

- RO3: Review the state-of-the-art on Point-of-Interest Recommender Systems
 - We characterize POI recommendation works between 2011 and 2019 analyzing the algorithms, the information, and the evaluation methodology used
- RO4: **Improve the performance** of **POI** recommendation algorithms
 - We propose multi-city aggregation strategies to augment the information of the recommenders
 - We improve the performance of most recommenders by selecting the cities by proximity

- RO3: Review the state-of-the-art on Point-of-Interest Recommender Systems
 - We characterize POI recommendation works between 2011 and 2019 analyzing the algorithms, the information, and the evaluation methodology used
- RO4: **Improve the performance** of **POI** recommendation algorithms
 - We propose multi-city aggregation strategies to augment the information of the recommenders
 - We improve the performance of most recommenders by selecting the cities by proximity
- RO5: Generate full sequences from Location-Based Social Networks data
 - We will use reranking techniques to generate routes from independent POIs
 - We demonstrate how we can improve the recommendations across different dimensions (category and/or distance) using our reranking approaches

11/82

\bigcirc Sequences in k-NN recommender systems

- Point-Of-Interest recommendation
- **5** Sequences in POI recommendation
- 6 Conclusions and future work

• Most **Recommender Systems** are only evaluated by **measuring the relevance** of the recommendations

- Most **Recommender Systems** are only evaluated by **measuring the relevance** of the recommendations
- Additional information (temporal, sequential, ratings, etc.) is being used by most recommenders, but not in the evaluation step

- Most **Recommender Systems** are only evaluated by **measuring the relevance** of the recommendations
- Additional information (temporal, sequential, ratings, etc.) is being used by most recommenders, but not in the evaluation step
- We focus on the first objective: we will show some examples of **incorporating additional information for measuring the quality** of the recommendations

- Most **Recommender Systems** are only evaluated by **measuring the relevance** of the recommendations
- Additional information (temporal, sequential, ratings, etc.) is being used by most recommenders, but not in the evaluation step
- We focus on the first objective: we will show some examples of **incorporating additional information for measuring the quality** of the recommendations
 - 1. Temporal information
 - 2. Anti-relevance models
 - 3. User and item attributes

- Most **Recommender Systems** are only evaluated by **measuring the relevance** of the recommendations
- Additional information (temporal, sequential, ratings, etc.) is being used by most recommenders, but not in the evaluation step
- We focus on the first objective: we will show some examples of **incorporating additional information for measuring the quality** of the recommendations
 - 1. Temporal information
 - 2. Anti-relevance models
 - 3. User and item attributes
- Contributions published in ECIR [Sánchez and Bellogín, 2018b] and RecSys [Sánchez and Bellogín, 2019a, Sánchez and Bellogín, 2018a]

Time-aware novelty metrics

Time-aware novelty metrics

(2018)

(2016)

 R_3

 R_1

 R_2

500 15/82

 $\exists \mapsto$ Ξ

Time-aware novelty metrics

• Best in Relevance?

ATTRIBUTES, SEQUENCES, AND TIME IN RS

 R_1

 R_2

15/82

Best in Relevance?
 R₂ > R₁ > R₃

ATTRIBUTES, SEQUENCES, AND TIME IN RS

15/82

- Best in Relevance?
 R₂ > R₁ > R₃
- Best in Novelty?

5/82

- Best in Relevance? • $R_2 > R_1 > R_3$
- Best in Novelty? • $R_1 > R_3 > R_2$

ATTRIBUTES, SEQUENCES, AND TIME IN RS

15/82

 R_3

- Best in Relevance?
 R₂ > R₁ > R₃
- Best in Novelty?
 R₁ > R₃ > R₂
- Best in **Temporal novelty**?

PhD dissertation July 8, 2021

ATTRIBUTES, SEQUENCES, AND TIME IN RS

15/82

- Best in Relevance?
 R₂ > R₁ > R₃
- Best in Novelty?
 R₁ > R₃ > R₂
- Best in Temporal novelty?
 R₃ > R₁ > R₂

ATTRIBUTES, SEQUENCES, AND TIME IN RS

15/82

$$m(R_u \mid \theta) = C \sum_{i_n \in R_u} \operatorname{disc}(n) p(rel \mid i_n, u) \operatorname{nov}(i_n \mid \theta)$$
 (5)

$$m(R_u \mid \theta) = C \sum_{i_n \in R_u} \operatorname{disc}(n) p(rel \mid i_n, u) \operatorname{nov}(i_n \mid \theta)$$
 (5)

- Where:
 - R_u items recommended to user u
 - θ contextual variable (e.g., the user profile)
 - $\operatorname{disc}(n)$ is a discount model (e.g. nDCG)
 - $p(rel \mid i_n, u)$ relevance component
 - $nov(i_n \mid \theta)$ novelty model

$$m(R_u \mid \theta) = C \sum_{i_n \in R_u} \operatorname{disc}(n) p(rel \mid i_n, u) \operatorname{nov}(i_n \mid \theta)$$
 (6)

• Probabilistic framework from [Vargas and Castells, 2011]

$$m(R_u \mid \theta) = C \sum_{i_n \in R_u} \operatorname{disc}(n) p(rel \mid i_n, u) \operatorname{nov}(i_n \mid \theta)$$
 (6)

• For example, when using $nov(i_n \mid \theta) = (1 - p(seen \mid i))$ we obtain the Expected Popularity Complement (EPC) metric

$$m(R_u \mid \theta) = C \sum_{i_n \in R_u} \operatorname{disc}(n) p(rel \mid i_n, u) \operatorname{nov}(i_n \mid \theta)$$
 (6)

- For example, when using $nov(i_n \mid \theta) = (1 p(\text{seen}|i))$ we obtain the Expected Popularity Complement (EPC) metric
- However, all the metrics derived from this framework are *time-agnostic*

$$m(R_u \mid \theta_t) = C \sum_{i_n \in R_u} \operatorname{disc}(n) p(rel \mid i_n, u) \boxed{\operatorname{nov}(i_n \mid \theta_t)}$$
(6)

- For example, when using $nov(i_n \mid \theta) = (1 p(seen \mid i))$ we obtain the Expected Popularity Complement (EPC) metric
- However, all the metrics derived from this framework are *time-agnostic*
- We propose to replace the novelty component defining new time-aware novelty models

• Every item in the system can be modeled with a temporal representation:

$$\theta_t = \{\theta_t(i)\} = \{(i, \langle t_1(i), \cdots, t_n(i) \rangle)\}$$
(7)

• Every item in the system can be modeled with a temporal representation:

$$\theta_t = \{\theta_t(i)\} = \{(i, \langle t_1(i), \cdots, t_n(i) \rangle)\}$$
(7)

• We will use the rating history of the items for generating the temporal representation

• Every item in the system can be modeled with a temporal representation:

$$\theta_t = \{\theta_t(i)\} = \{(i, \langle t_1(i), \cdots, t_n(i) \rangle)\}$$
(7)

- We will use the rating history of the items for generating the temporal representation
- We explore 4 aggregation functions: the first interaction (FIN), the last interaction (LIN), the **average of the** ratings times (AIN) and the median of the ratings times (MIN)

• Every item in the system can be modeled with a temporal representation:

$$\theta_t = \{\theta_t(i)\} = \{(i, \langle t_1(i), \cdots, t_n(i) \rangle)\}$$
(7)

- We will use the rating history of the items for generating the temporal representation
- We explore 4 aggregation functions: the first interaction (FIN), the last interaction (LIN), the **average of the** ratings times (AIN) and the median of the ratings times (MIN)
- We normalize the values to be suitable for the probabilistic framework (min-max normalization)

• Differences between the proposed aggregation functions

PhD dissertation July 8, 2021 19/82ATTRIBUTES, SEQUENCES, AND TIME IN RS

• Differences between the proposed aggregation functions

19/82

• Differences between the proposed aggregation functions

PhD dissertation July 8, 2021 ATTRIBUTES, SEQUENCES, AND TIME IN RS 19/82

• We propose metrics that **exploit** the **temporal information** of the **interactions of the items**

- We propose metrics that **exploit** the **temporal information** of the **interactions of the items**
- Our metrics allow us to measure the **temporal novelty** of the items in the system

- We propose metrics that **exploit** the **temporal information** of the **interactions of the items**
- Our metrics allow us to measure the **temporal novelty** of the items in the system
- Our metrics are **integrated** in a previous defined **novelty framework**

- We propose metrics that **exploit** the **temporal information** of the **interactions of the items**
- Our metrics allow us to measure the **temporal novelty** of the items in the system
- Our metrics are **integrated** in a previous defined **novelty framework**
- We believe that **AIN** and **MIN** are the strategies that capture better the **temporal evolution** of the items

.6

(1972)

(2001)

a d

(1997)

(2018)

(2017)

PhD dissertation July 8, 2021

(2016)

(1994)

(1993)

SCHIN

22/82

Ξ

 R_1

(1994)

(1993)

(2018)

(2017)

• Best recommendation list?

PhD dissertation July 8, 2021 ATTRIBUTES, SEQUENCES, AND TIME IN RS

• Best recommendation list?

ATTRIBUTES, SEQUENCES, AND TIME IN RS

• All lists return 1 relevant item

- Best recommendation list?
- All lists return 1 relevant item
- But R_3 return 2 bad items

 R_3

PhD dissertation July 8, 2021 22/82ATTRIBUTES, SEQUENCES, AND TIME IN RS

- Best recommendation list?
- All lists return 1 relevant item
- But R_3 return 2 bad items
- We should also **measure** the **anti-relevant** items

ATTRIBUTES, SEQUENCES, AND TIME IN RS

22/82

• The Probabilistic Ranking Principle (PRP):

If a system's response to a query is a ranking of documents in order of decreasing probability of relevance, the overall effectiveness of the system to its users will be maximized —[Robertson, 1997] • The Probabilistic Ranking Principle (PRP):

If a system's response to a query is a ranking of documents in order of decreasing probability of relevance, the overall effectiveness of the system to its users will be maximized —[Robertson, 1997]

• Most ranking-based accuracy metrics are formulated to estimate the classical PRP:

$$m(R_u|\theta_{rel}) = C \sum_{i \in R_u} m(\theta_{rel}(r_{ui})|u, i)$$
(8)

• We study the dual PRP problem:

$$\overline{m}(R_u|\theta_{arel}) = C \sum_{i \in R_u} \left(1 - \overline{m}(\theta_{arel}(r_{ui})|u, i)\right) \propto \\ \propto 1 - C' \sum_{i \in R_u} m(\theta_{arel}(r_{ui})|u, i) = \boxed{1 - m(R_u|\theta_{arel})} \quad (9)$$

• We study the dual PRP problem:

$$\overline{m}(R_u|\theta_{arel}) = C \sum_{i \in R_u} \left(1 - \overline{m}(\theta_{arel}(r_{ui})|u, i)\right) \propto \\ \propto 1 - C' \sum_{i \in R_u} m(\theta_{arel}(r_{ui})|u, i) = \boxed{1 - m(R_u|\theta_{arel})} \quad (9)$$

• Our anti-relevance metrics formulation is equivalent to computing any relevance-based metric using an anti-relevance model (where an item is relevant if $r_{ui} \leq \tau_{AR}$) and returning its complement. Higher value implies less anti-relevant items recommended

• Relevance metrics **only measure** the amount of **highly relevant** items recommended by the user
- Relevance metrics **only measure** the amount of **highly relevant** items recommended by the user
- However, we should also **measure** the number of items with low ratings that we are recommending to the users. Users tend to **penalize** the recommenders **mistakes**

- Relevance metrics **only measure** the amount of **highly relevant** items recommended by the user
- However, we should also **measure** the number of items with low ratings that we are recommending to the users. Users tend to **penalize** the recommenders **mistakes**
- We can analyze the **anti-relevance** of the items by computing classical relevance metrics with an **anti-relevance models**

Incorporating user and item attributes in our metrics

• We usually assume that all users in the system are equal

1 ⁻ 1

User attributes

- We usually assume that all users in the system are equal
- But some users may belong to **less represented groups** and our recommendations may be **biased** towards the **majority groups**

User attributes

- We usually assume that all users in the system are equal
- But some users may belong to **less represented groups** and our recommendations may be **biased** towards the **majority groups**

• Should not we be analyzing the **performance** of **specific groups** of users?

$$m(\theta) = C^{-1} \sum_{u \in \mathcal{U}} c(u) \cdot m(R_u, \theta)$$
(10)

• In every recommendation we can distinguish the **items that appear in the test set** w^+ , non-relevant items that share similarity with the items in test w^* and the rest w^-

$$m(R_u,\theta) \propto \sum_{\boldsymbol{i} \in \boldsymbol{I^+}(\boldsymbol{u})} \boldsymbol{w^+}(\boldsymbol{u},\boldsymbol{i}) + \sum_{\boldsymbol{i} \in \boldsymbol{I^*}(\boldsymbol{u})} \boldsymbol{w^*}(\boldsymbol{u},\boldsymbol{i}) + \sum_{\boldsymbol{i} \in \boldsymbol{I^-}(\boldsymbol{u})} \boldsymbol{w^-}(\boldsymbol{u},\boldsymbol{i})$$
(11)

• In every recommendation we can distinguish the items that appear in the test set w^+ , non-relevant items that **share similarity** with the **items in test** w^* and the rest w^-

$$m(R_u,\theta) \propto \sum_{i \in I^+(u)} w^+(u,i) + \sum_{i \in I^*(u)} w^*(u,i) + \sum_{i \in I^-(u)} w^-(u,i)$$
(11)

• In every recommendation we can distinguish the items that appear in the test set w^+ , non-relevant items that share similarity with the items in test w^* and the rest w^-

$$m(R_u, \theta) \propto \sum_{i \in I^+(u)} w^+(u, i) + \sum_{i \in I^*(u)} w^*(u, i) + \sum_{i \in I^-(u)} w^-(u, i)$$
(11)

• In every recommendation we can distinguish the items that appear in the test set w^+ , non-relevant items that share similarity with the items in test w^* and the rest w^-

$$m(R_u, \theta) \propto \sum_{i \in I^+(u)} w^+(u, i) + \sum_{i \in I^*(u)} w^*(u, i) + \sum_{i \in I^-(u)} w^-(u, i)$$
(11)

Test

 R_1

 R_2

Attributes in evaluation: a summary

• We can use **user attributes** to **detect** possible **biases** in the algorithms. The recommendations might be biased toward the majority groups

- We can use **user attributes** to **detect** possible **biases** in the algorithms. The recommendations might be biased toward the majority groups
- Item attributes can be integrated into classical relevance metrics to consider more items in the recommendations as partially relevant

• Objective: test our metrics in well-known datasets

→ ∃ →

- Objective: test our metrics in well-known datasets
- Datasets:
 - Movielens1M: 6k users, 3.7k items, 1M ratings (1-5)
 - FS (Tokyo): 11.6k users, 51.1k items, 998k interactions

- Objective: test our metrics in well-known datasets
- Datasets:
 - Movielens1M: 6k users, 3.7k items, 1M ratings (1-5)
 - FS (Tokyo): 11.6k users, 51.1k items, 998k interactions
- Recommenders:
 - No personalized: Pop, Rnd
 - *k*-NN: UBCB, IB, UB
 - Matrix factorization: HKV, BPRMF
 - Temporal/Sequential: TD, MC, FPMC, Fossil, Caser
 - Skylines: Skyline

- Objective: test our metrics in well-known datasets
- Datasets:
 - Movielens1M: 6k users, 3.7k items, 1M ratings (1-5)
 - FS (Tokyo): 11.6k users, 51.1k items, 998k interactions
- Recommenders:
 - No personalized: Pop, Rnd
 - *k*-NN: UBCB, IB, UB
 - Matrix factorization: HKV, BPRMF
 - Temporal/Sequential: TD, MC, FPMC, Fossil, Caser
 - Skylines: Skyline
- Splits:
 - Temporal system split (TS, 80% training)
 - Random system split (RS, 80% training)

Experiments: time-aware novelty metrics

→ Ξ →

Experiments: time-aware novelty metrics. Metrics @5

• Skyline obtain high results in our time-aware novelty metrics. Temporal novel items are relevant

Recommender	FIN	AIN	MIN	LIN
Rnd	0.118	0.630	0.616	0.971
Rnd_{CF}	0.112	0.626	0.611	0.972
Pop	0.000	0.614	0.592	†1.000
$\operatorname{Pop}_{\operatorname{CF}}$	0.000	0.613	0.591	1.000
UBCB	0.001	0.608	0.579	0.999
IB	0.001	0.605	0.570	0.999
UB	0.004	0.610	0.581	0.999
HKV	0.005	0.611	0.585	0.999
BPRMF	0.003	0.614	0.591	0.999
TD	0.004	0.612	0.587	0.999
MC	0.028	0.629	0.614	0.999
FPMC	0.001	0.606	0.577	0.999
Fossil	0.004	0.613	0.591	0.999
Caser	0.025	0.626	0.609	0.999
Skyline	0.136	0.666	0.661	0.998
$Skyline_{CF}$	$^{+0.145}$	$^{\dagger 0.671}$	† 0.670	0.997

• Some sequential recommenders do not obtain high results in time-aware novelty metrics

Recommender	FIN	AIN	MIN	LIN
Rnd	0.118	0.630	0.616	0.971
Rnd_{CF}	0.112	0.626	0.611	0.972
Pop	0.000	0.614	0.592	$^{+1.000}$
$\operatorname{Pop}_{\operatorname{CF}}$	0.000	0.613	0.591	1.000
UBCB	0.001	0.608	0.579	0.999
IB	0.001	0.605	0.570	0.999
UB	0.004	0.610	0.581	0.999
HKV	0.005	0.611	0.585	0.999
BPRMF	0.003	0.614	0.591	0.999
TD	0.004	0.612	0.587	0.999
MC	0.028	0.629	0.614	0.999
FPMC	0.001	0.606	0.577	0.999
Fossil	0.004	0.613	0.591	0.999
Caser	0.025	0.626	0.609	0.999
Skyline	0.136	0.666	0.661	0.998
Skyline _{CF}	†0.145	†0.671	† 0.670	0.997

Experiments: time-aware novelty metrics. Metrics @5

• AIN and MIN are more useful than FIN and LIN. Most models achieve low values of FIN and high values of LIN

)
Recommender	FIN	AIN	MIN	LIN
Rnd	0.118	0.630	0.616	0.971
Rnd_{CF}	0.112	0.626	0.611	0.972
Pop	0.000	0.614	0.592	$^{\dagger 1.000}$
Pop_{CF}	0.000	0.613	0.591	1.000
UBCB	0.001	0.608	0.579	0.999
IB	0.001	0.605	0.570	0.999
UB	0.004	0.610	0.581	0.999
HKV	0.005	0.611	0.585	0.999
BPRMF	0.003	0.614	0.591	0.999
TD	0.004	0.612	0.587	0.999
MC	0.028	0.629	0.614	0.999
FPMC	0.001	0.606	0.577	0.999
Fossil	0.004	0.613	0.591	0.999
Caser	0.025	0.626	0.609	0.999
Skyline	0.136	0.666	0.661	0.998
Skyline _{CF}	$^{+0.145}$	† 0.671	† 0.67 0	0.997
				/

32/82

Image: A match and a match

Experiments: time-aware novelty metrics. Metrics @5

• AIN and MIN are more useful than FIN and LIN. Most models achieve low values of FIN and high values of LIN

	\square	<u> </u>		
Recommender	FIN	AIN	MIN	LIN
Rnd	0.118	0.630	0.616	0.971
Rnd_{CF}	0.112	0.626	0.611	0.972
Pop	0.000	0.614	0.592	$^{\dagger 1.000}$
Pop _{CF}	0.000	0.613	0.591	1.000
UBCB	0.001	0.608	0.579	0.999
IB	0.001	0.605	0.570	0.999
UB	0.004	0.610	0.581	0.999
HKV	0.005	0.611	0.585	0.999
BPRMF	0.003	0.614	0.591	0.999
TD	0.004	0.612	0.587	0.999
MC	0.028	0.629	0.614	0.999
FPMC	0.001	0.606	0.577	0.999
Fossil	0.004	0.613	0.591	0.999
Caser	0.025	0.626	0.609	0.999
Skyline	0.136	0.666	0.661	0.998
Skyline _{CF}	$^{+0.145}$	†0.671	† 0.670	0.997
		/		

Experiments: anti-relevance metrics

► 4 Ξ ►

Experiments: anti-relevance metrics. Metrics @5

• Rnd recommender achieves highest values in anti-relevance metrics

Recommender	Р	$\overline{\mathbf{P}}$	nDCG	nDCG
Rnd	0.019	0.993	0.012	0.996
Rnd _{CF}	0.015	0.994	0.008	0.997
Pop	0.281	0.977	0.221	0.981
Pop _{CF}	0.210	0.979	0.161	0.983
UBCB	0.254	0.979	0.195	0.985
IB	0.234	0.979	0.177	0.987
UB	0.248	0.985	0.195	0.990
HKV	0.257	0.985	0.202	0.990
BPRMF	0.231	0.975	0.172	0.983
TD	0.248	0.987	0.194	0.990
MC	0.177	0.972	0.134	0.978
FPMC	0.212	0.979	0.159	0.985
Fossil	0.227	0.974	0.170	0.984
Caser	0.192	0.969	0.136	0.977
Skyline	† 0.943	† 1.000	†1. 000	†1.000
$Skyline_{CF}$	0.911	1.000	0.999	1.000
Skyline	0.000	0.189	0.000	0.001
$\overline{\text{Skyline}}_{CF}$	0.000	0.221	0.000	0.001

Experiments: anti-relevance metrics. Metrics @5

• Personalized recommenders sometimes fail in the recommendations

Recommender	Р	$\overline{\mathbf{P}}$	nDCG	nDCG
Rnd	0.019	0.993	0.012	0.996
Rnd_{CF}	0.015	0.994	0.008	0.997
Pop	0.281	0.977	0.221	0.981
Pop _{CF}	0.210	0.979	0.161	0.983
UBCB	0.254	0.979	0.195	0.985
IB	0.234	0.979	0.177	0.987
UB	0.248	0.985	0.195	0.990
HKV	0.257	0.985	0.202	0.990
BPRMF	0.231	0.975	0.172	0.983
TD	0.248	0.987	0.194	0.990
MC	0.177	0.972	0.134	0.978
FPMC	0.212	0.979	0.159	0.985
Fossil	0.227	0.974	0.170	0.984
Caser	0.192	0.969	0.136	0.977
Skyline	† 0.943	† 1 .000	† 1 .000	† 1 .000
Skyline _{CF}	0.911	1.000	0.999	1.000
Skyline	0.000	0.189	0.000	0.001
$\overline{\text{Skyline}}_{CF}$	0.000	0.221	0.000	0.001

Experiments: user and item attributes

→ Ξ →

• In Movielens1M, users with more than 56 years (~5%) tend to obtain lower results in terms of relevance

	\square	Ger	nder		Α	ge	\square		Test Q	uartile	
Family	\mathbf{Std}	F	м	1	18	35	56	Q1	$\mathbf{Q2}$	$\mathbf{Q3}$	$\mathbf{Q4}$
Rnd Rnd _{CF} Pop Pop _{CF}	0.012 0.008 0.221 0.161	0.011 0.010 0.177 0.131	0.012 0.008 0.238 0.171	0.011 0.003 0.192 0.185	0.014 0.009 0.250 0.178	0.009 0.009 0.190 0.135	$\begin{array}{c} 0.005 \\ 0.000 \\ 0.132 \\ 0.101 \end{array}$	$\begin{array}{c} 0.003 \\ 0.002 \\ 0.055 \\ 0.043 \end{array}$	$0.004 \\ 0.003 \\ 0.160 \\ 0.114$	0.016 0.006 0.260 0.219	0.023 0.027 0.406 0.344
UBCB IB UB	$\begin{array}{c} 0.195 \\ 0.177 \\ 0.195 \end{array}$	$\begin{array}{c} 0.177 \\ 0.153 \\ 0.173 \end{array}$	$\begin{array}{c} 0.202 \\ 0.185 \\ 0.202 \end{array}$	$\begin{array}{c} 0.195 \\ 0.168 \\ 0.194 \end{array}$	0.206 0.187 0.208	$\begin{array}{c} 0.180 \\ 0.161 \\ 0.176 \end{array}$	$\begin{array}{c} 0.164 \\ 0.166 \\ 0.160 \end{array}$	$\begin{array}{c} 0.057 \\ 0.052 \\ 0.067 \end{array}$	0.178 0.144 0.165	$\begin{array}{c} 0.264 \\ 0.239 \\ 0.274 \end{array}$	$\begin{array}{c} 0.368 \\ 0.351 \\ 0.352 \end{array}$
HKV BPRMF	0.202 0.172	0.184 0.166	$0.209 \\ 0.175$	0.207 0.180	$\begin{array}{c} 0.213 \\ 0.179 \end{array}$	$0.185 \\ 0.164$	0.191 0.144	0.074 0.056	$0.166 \\ 0.144$	0.284 0.232	$0.366 \\ 0.330$
TD MC FPMC Fossil Caser	$\begin{array}{c} 0.194 \\ 0.134 \\ 0.159 \\ 0.170 \\ 0.136 \end{array}$	$\begin{array}{c} 0.176 \\ 0.127 \\ 0.139 \\ 0.178 \\ 0.141 \end{array}$	$\begin{array}{c} 0.200 \\ 0.137 \\ 0.166 \\ 0.168 \\ 0.135 \end{array}$	$\begin{array}{c} 0.188 \\ 0.127 \\ 0.196 \\ 0.160 \\ 0.114 \end{array}$	$\begin{array}{c} 0.205 \\ 0.142 \\ 0.176 \\ 0.177 \\ 0.143 \end{array}$	$\begin{array}{c} 0.178 \\ 0.123 \\ 0.134 \\ 0.160 \\ 0.128 \end{array}$	$\begin{array}{c} 0.171 \\ 0.122 \\ 0.085 \\ 0.172 \\ 0.129 \end{array}$	$\begin{array}{c} 0.066 \\ 0.052 \\ 0.044 \\ 0.062 \\ 0.044 \end{array}$	$\begin{array}{c} 0.162 \\ 0.109 \\ 0.124 \\ 0.134 \\ 0.109 \end{array}$	$\begin{array}{c} 0.270 \\ 0.170 \\ 0.215 \\ 0.221 \\ 0.202 \end{array}$	$\begin{array}{c} 0.358 \\ 0.257 \\ 0.327 \\ 0.333 \\ 0.248 \end{array}$
$\begin{array}{c} {\rm Skyline} \\ {\rm Skyline}_{\rm CF} \end{array}$	† 1.000 0.999	† 1.000 1.000	† 1.000 0.999	† 1.000 1.000	† 1.000 1.000	† 0.999 0.999	† 1.000 1.000	† 1.000 1.000	† 1.000 1.000	† 0.999 0.998	† 1.000 1.000
	\square		I				\square				

PhD dissertation July 8, 2021 ATTRIBUTES, SEQUENCES, AND TIME IN RS

• In Movielens1M and FS (Tokyo), females ($\sim 27\%$ and $\sim 11\%$) also tend to obtain lower in terms of relevance

	\square	Ger	der		Α	ge			Test Q	uartile	
Family	\mathbf{Std}	F	м	1	18	35	56	$\mathbf{Q1}$	$\mathbf{Q2}$	$\mathbf{Q3}$	Q 4
Rnd Rnd _{CF} Pop Pop _{CF}	0.012 0.008 0.221 0.161	0.011 0.010 0.177 0.131	0.012 0.008 0.238 0.171	$\begin{array}{c} 0.011 \\ 0.003 \\ 0.192 \\ 0.185 \end{array}$	0.014 0.009 0.250 0.178	0.009 0.009 0.190 0.135	$0.005 \\ 0.000 \\ 0.132 \\ 0.101$	$\begin{array}{c} 0.003 \\ 0.002 \\ 0.055 \\ 0.043 \end{array}$	$\begin{array}{c} 0.004 \\ 0.003 \\ 0.160 \\ 0.114 \end{array}$	$0.016 \\ 0.006 \\ 0.260 \\ 0.219$	0.023 0.027 0.406 0.344
UBCB IB UB	$\begin{array}{c} 0.195 \\ 0.177 \\ 0.195 \end{array}$	$\begin{array}{c} 0.177 \\ 0.153 \\ 0.173 \end{array}$	0.202 0.185 0.202	$0.195 \\ 0.168 \\ 0.194$	0.206 0.187 0.208	$\begin{array}{c} 0.180 \\ 0.161 \\ 0.176 \end{array}$	$\begin{array}{c} 0.164 \\ 0.166 \\ 0.160 \end{array}$	$\begin{array}{c} 0.057 \\ 0.052 \\ 0.067 \end{array}$	0.178 0.144 0.165	$\begin{array}{c} 0.264 \\ 0.239 \\ 0.274 \end{array}$	$\begin{array}{c} 0.368 \\ 0.351 \\ 0.352 \end{array}$
HKV BPRMF	0.202 0.172	0.184 0.166	$\begin{array}{c} 0.209 \\ 0.175 \end{array}$	0.207 0.180	$\begin{array}{c} 0.213 \\ 0.179 \end{array}$	$\begin{array}{c} 0.185 \\ 0.164 \end{array}$	0.191 0.144	0.074 0.056	$0.166 \\ 0.144$	0.284 0.232	$0.366 \\ 0.330$
TD MC FPMC Fossil Caser	$\begin{array}{c} 0.194 \\ 0.134 \\ 0.159 \\ 0.170 \\ 0.136 \end{array}$	$\begin{array}{c} 0.176 \\ 0.127 \\ 0.139 \\ 0.178 \\ 0.141 \end{array}$	$\begin{array}{c} 0.200 \\ 0.137 \\ 0.166 \\ 0.168 \\ 0.135 \end{array}$	$\begin{array}{c} 0.188 \\ 0.127 \\ 0.196 \\ 0.160 \\ 0.114 \end{array}$	$\begin{array}{c} 0.205 \\ 0.142 \\ 0.176 \\ 0.177 \\ 0.143 \end{array}$	$\begin{array}{c} 0.178 \\ 0.123 \\ 0.134 \\ 0.160 \\ 0.128 \end{array}$	$\begin{array}{c} 0.171 \\ 0.122 \\ 0.085 \\ 0.172 \\ 0.129 \end{array}$	$\begin{array}{c} 0.066 \\ 0.052 \\ 0.044 \\ 0.062 \\ 0.044 \end{array}$	$\begin{array}{c} 0.162 \\ 0.109 \\ 0.124 \\ 0.134 \\ 0.109 \end{array}$	$\begin{array}{c} 0.270 \\ 0.170 \\ 0.215 \\ 0.221 \\ 0.202 \end{array}$	$\begin{array}{c} 0.358 \\ 0.257 \\ 0.327 \\ 0.333 \\ 0.248 \end{array}$
$\begin{array}{c} \text{Skyline} \\ \text{Skyline}_{\text{CF}} \end{array}$	† 1.000 0.999	† 1.000 1.000	† 1.000 0.999	† 1.000 1.000	† 1.000 1.000	† 0.999 0.999	† 1.000 1.000	†1.000 1.000	† 1.000 1.000	† 0.999 0.998	†1.000 1.000
	\square										

• The higher the test quartile, the higher the results obtained (more items in the test set)

	\bigcirc	Ger	nder		Α	ge	ſ		Test Q	uartile	\square
Family	\mathbf{Std}	F	\mathbf{M}	1	18	35	56	Q1	$\mathbf{Q2}$	$\mathbf{Q3}$	Q4
Rnd Rnd _{CF} Pop Pop _{CF}	0.012 0.008 0.221 0.161	0.011 0.010 0.177 0.131	0.012 0.008 0.238 0.171	0.011 0.003 0.192 0.185	0.014 0.009 0.250 0.178	0.009 0.009 0.190 0.135	$\begin{array}{c} 0.005 \\ 0.000 \\ 0.132 \\ 0.101 \end{array}$	$\begin{array}{c} 0.003 \\ 0.002 \\ 0.055 \\ 0.043 \end{array}$	$\begin{array}{c} 0.004 \\ 0.003 \\ 0.160 \\ 0.114 \end{array}$	0.016 0.006 0.260 0.219	0.023 0.027 0.406 0.344
UBCB IB UB	$\begin{array}{c} 0.195 \\ 0.177 \\ 0.195 \end{array}$	$\begin{array}{c} 0.177 \\ 0.153 \\ 0.173 \end{array}$	$\begin{array}{c} 0.202 \\ 0.185 \\ 0.202 \end{array}$	$\begin{array}{c} 0.195 \\ 0.168 \\ 0.194 \end{array}$	0.206 0.187 0.208	$\begin{array}{c} 0.180 \\ 0.161 \\ 0.176 \end{array}$	$\begin{array}{c} 0.164 \\ 0.166 \\ 0.160 \end{array}$	0.057 0.052 0.067	0.178 0.144 0.165	$0.264 \\ 0.239 \\ 0.274$	0.368 0.351 0.352
HKV BPRMF	0.202 0.172	0.184 0.166	$0.209 \\ 0.175$	0.207 0.180	$0.213 \\ 0.179$	$0.185 \\ 0.164$	0.191 0.144	0.074 0.056	$0.166 \\ 0.144$	0.284 0.232	$0.366 \\ 0.330$
TD MC FPMC Fossil Caser	$\begin{array}{c} 0.194 \\ 0.134 \\ 0.159 \\ 0.170 \\ 0.136 \end{array}$	$\begin{array}{c} 0.176 \\ 0.127 \\ 0.139 \\ 0.178 \\ 0.141 \end{array}$	$\begin{array}{c} 0.200 \\ 0.137 \\ 0.166 \\ 0.168 \\ 0.135 \end{array}$	$\begin{array}{c} 0.188 \\ 0.127 \\ 0.196 \\ 0.160 \\ 0.114 \end{array}$	$\begin{array}{c} 0.205 \\ 0.142 \\ 0.176 \\ 0.177 \\ 0.143 \end{array}$	$\begin{array}{c} 0.178 \\ 0.123 \\ 0.134 \\ 0.160 \\ 0.128 \end{array}$	$\begin{array}{c} 0.171 \\ 0.122 \\ 0.085 \\ 0.172 \\ 0.129 \end{array}$	$\begin{array}{c} 0.066 \\ 0.052 \\ 0.044 \\ 0.062 \\ 0.044 \end{array}$	$\begin{array}{c} 0.162 \\ 0.109 \\ 0.124 \\ 0.134 \\ 0.109 \end{array}$	$\begin{array}{c} 0.270 \\ 0.170 \\ 0.215 \\ 0.221 \\ 0.202 \end{array}$	$\begin{array}{c} 0.358 \\ 0.257 \\ 0.327 \\ 0.333 \\ 0.248 \end{array}$
$\begin{array}{c} \text{Skyline} \\ \text{Skyline}_{\text{CF}} \end{array}$	† 1.000 0.999	† 1.000 1.000	† 1.000 0.999	† 1.000 1.000	† 1.000 1.000	† 0.999 0.999	† 1.000 1.000	† 1.000 1.000	† 1.000 1.000	† 0.999 0.998	† 1.000 1.000

• Using the both main and secondary features we obtain higher results than the pure metric

		nD	\mathbf{CG}	
Family	$\tau = 0$	τ_m	τ_s	τ_{ms}
Rnd	0.012	0.034	0.269	0.276
Rnd _{CF}	0.008	0.023	0.251	0.255
Pop	0.221	0.244	0.361	0.372
Pop_{CF}	0.161	0.189	0.308	0.322
UBCB	0.195	0.221	0.356	0.366
IB	0.177	0.206	0.322	0.337
UB	0.195	0.224	0.347	0.360
HKV	0.202	0.230	0.364	0.375
BPRMF	0.172	0.201	0.334	0.347
TD	0.194	0.223	0.347	0.361
MC	0.134	0.170	0.312	0.327
FPMC	0.159	0.181	0.314	0.325
Fossil	0.170	0.195	0.331	0.342
Caser	0.136	0.166	0.309	0.321
Skyline	†1.000	† 1.000	† 1.000	†1.000
Skylinecr	0.999	0.999	0.999	0.999

 $\tau = 0$: pure metric τ_m : main feature (directors) τ_s : secondary feature (genres)

36/82

► 4 Ξ ►

• Misleading results might be obtained using higher values of the similarities (Rnd recommender becomes competitive)

			nD	\mathbf{CG}	
	Family	$\tau = 0$	τ_m	τ_s	τ_{ms}
	Rnd	0.012	0.034	0.269	0.276
	Rnd_{CF}	0.008	0.023	0.251	0.255
	Pop	0.221	0.244	0.361	0.372
	Pop_{CF}	0.161	0.189	0.308	0.322
	UBCB	0.195	0.221	0.356	0.366
$\tau = 0$ pure metric	IB	0.177	0.206	0.322	0.337
	UB	0.195	0.224	0.347	0.360
τ_m : main feature	HKV	0.202	0.230	0.364	0.375
(directors)	BPRMF	0.172	0.201	0.334	0.347
secondary feature	TD	0.194	0.223	0.347	0.361
s. secondary reasone	MC	0.134	0.170	0.312	0.327
(genres)	FPMC	0.159	0.181	0.314	0.325
	Fossil	0.170	0.195	0.331	0.342
	Caser	0.136	0.166	0.309	0.321
	Skyline Skyline _{CF}	† 1.000 0.999	† 1.000 0.999	† 1.000 0.999	† 1.000 0.999

36/82

► 4 Ξ ►

• Analyzing **only** the **relevance** of recommendations is **incomplete**

TH 14

- Analyzing **only** the **relevance** of recommendations is **incomplete**
- There is a **relationship** between **time-aware novelty metrics** and **relevance**

- Analyzing **only** the **relevance** of recommendations is **incomplete**
- There is a **relationship** between **time-aware novelty metrics** and **relevance**
- The RS community should further **analyze** the **bad recommendations** of the algorithms

- Analyzing **only** the **relevance** of recommendations is **incomplete**
- There is a **relationship** between **time-aware novelty metrics** and **relevance**
- The RS community should further **analyze** the **bad recommendations** of the algorithms
- The RS community should **exploit** the **attributes** of both users and items to better analyze the performance of the recommenders

3 Sequences in k-NN recommender systems

- Point-Of-Interest recommendation
- Sequences in POI recommendation
- 6 Conclusions and future work

k-NN recommender systems

• Second objective: develop mechanisms to **incorporate** sequentiality in *k*-NN recommender systems
- Second objective: develop mechanisms to **incorporate** sequentiality in *k*-NN recommender systems
- We will define a **sequential similarity metric** based on LCS

- Second objective: develop mechanisms to **incorporate** sequentiality in *k*-NN recommender systems
- We will define a sequential similarity metric based on LCS
- We will also **redefine** the classical formulation of *k*-**NN recommender systems**

- Second objective: develop mechanisms to **incorporate** sequentiality in *k*-NN recommender systems
- We will define a **sequential similarity metric** based on LCS
- We will also **redefine** the classical formulation of *k*-**NN recommender systems**
- Contributions published in Information Processing and Management [Sánchez and Bellogín, 2020b] journal. Based on the future work of [Sánchez and Bellogín, 2019b] and [Bellogín and Sánchez, 2017]. Research conducted during the master's degree.

Defining a new similarity metric

< ∃ >

 \bullet Classic formulation of $k\text{-}\mathrm{NN}$ recommender systems:

$$\hat{r}_{ui} = \sum_{v \in \mathcal{N}_i(u)} r_{vi} w_{uv}$$
(12)

• Classic formulation of *k*-NN recommender systems:

$$\hat{r}_{ui} = \sum_{v \in \mathcal{N}_i(u)} r_{vi} w_{uv}$$
(12)

Cosine similarity
$$(u, v) = \frac{\sum_{i \in \mathcal{I}_{uv}} r_{ui} r_{vi}}{\sqrt{\sum_{i \in \mathcal{I}_u} r_{ui}^2 \sum_{j \in \mathcal{I}_v} r_{vj}^2}}$$
 (13)

Pearson correlation
$$(u, v) = \frac{\sum_{i \in \mathcal{I}_{uv}} (r_{ui} - \overline{r}_u) (r_{vi} - \overline{r}_v)}{\sqrt{\sum_{i \in \mathcal{I}_{uv}} (r_{ui} - \overline{r}_u)^2 \sum_{i \in \mathcal{I}_{uv}} (r_{vi} - \overline{r}_v)^2}}$$
(14)

- (E) -

 \bullet Classic formulation of $k\text{-}\mathrm{NN}$ recommender systems:

$$\hat{r}_{ui} = \sum_{v \in \mathcal{N}_i(u)} r_{vi} w_{uv}$$
(12)

$$\operatorname{Pearson\ correlation}(u,v) = \frac{\sum_{i \in \mathcal{I}_{uv}} r_{ui} r_{vi}}{\sqrt{\sum_{i \in \mathcal{I}_u} r_{ui}^2 \sum_{j \in \mathcal{I}_v} r_{vj}^2}}$$
(13)
$$\frac{\sum_{i \in \mathcal{I}_{uv}} (r_{ui} - \overline{r}_u) \sum_{i \in \mathcal{I}_{uv}} (r_{vi} - \overline{r}_v)}{\sqrt{\sum_{i \in \mathcal{I}_{uv}} (r_{ui} - \overline{r}_u)^2 \sum_{i \in \mathcal{I}_{uv}} (r_{vi} - \overline{r}_v)^2}}$$
(14)

• We propose a sequential similarity metric between users u and v:

$$w_{uv} \sim LCS(u,v)$$
 , where $v \in \mathbb{R}$, we have $u \in \mathbb{R}$.

• Applications on text comparison and DNA sequences 1: procedure LCS(x, y) \triangleright LCS between x and y $L[0\cdots m, 0\cdots n] \leftarrow 0$ 2: 3: for $i \leftarrow 1, m$ do for $j \leftarrow 1, n$ do \triangleright There is a match 4: if $x_i = y_i$ then 5: $L[i, j] \leftarrow L[i-1, j-1] + 1$ 6: 7: else $L[i, j] \leftarrow \max(L[i, j-1], L[i-1, j])$ 8: end if g. end for 10:end for 11: **return** $L[m, n] \triangleright L[m, n]$ contains the length of the LCS 12:between $x_1 \ldots x_i$ and $y_1 \ldots y_i$

13: end procedure

42/82

• Applications on text comparison and DNA sequences 1: procedure LCS(x, y) \triangleright LCS between x and y $L[0\cdots m, 0\cdots n] \leftarrow 0$ 2: 3: for $i \leftarrow 1, m$ do for $j \leftarrow 1, n$ do \triangleright There is a match 4: if $x_i = y_i$ then 5: $L[i, j] \leftarrow L[i-1, j-1] + 1$ 6: else 7: $L[i, j] \leftarrow \max(L[i, j-1], L[i-1, j])$ 8: end if g. end for $10 \cdot$ end for 11: **return** $L[m,n] \triangleright L[m,n]$ contains the length of the LCS 12between $x_1 \ldots x_i$ and $y_1 \ldots y_j$ 13: end procedure

42/82

Longest Common Subsequence

$$L[i,j] = \begin{cases} 0 & \text{if } i=0 \text{ or } j=0\\ L[i-1,j-1]+1 & \text{if } i,j>0 \text{ and } X_i = Y_j\\ \max(L[i,j-1], L[i-1,j]) & \text{if } i,j>0 \text{ and } X_i \neq Y_j \end{cases}$$
(15)

→ ∃ →

Ξ

Longest Common Subsequence

$$L[i,j] = \begin{cases} 0 & \text{if } i=0 \text{ or } j=0\\ L[i-1,j-1]+1 & \text{if } i,j>0 \text{ and } X_i = Y_j\\ \max(L[i,j-1], L[i-1,j]) & \text{if } i,j>0 \text{ and } X_i \neq Y_j \end{cases}$$
(15)

 $\exists \mapsto$

Longest Common Subsequence

$$L[i,j] = \begin{cases} 0 & \text{if } i=0 \text{ or } j=0\\ L[i-1,j-1]+1 & \text{if } i,j>0 \text{ and } X_i = Y_j\\ \max(L[i,j-1], L[i-1,j]) & \text{if } i,j>0 \text{ and } X_i \neq Y_j \end{cases}$$
(15)

 $\exists \mapsto$

Longest Common Subsequence

$$L[i,j] = \begin{cases} 0 & \text{if } i=0 \text{ or } j=0\\ L[i-1,j-1]+1 & \text{if } i,j>0 \text{ and } X_i = Y_j\\ \max(L[i,j-1], L[i-1,j]) & \text{if } i,j>0 \text{ and } X_i \neq Y_j \end{cases}$$
(15)

	Ø	А	G	G	Т	А	\mathbf{C}	
Ø	0	0	0	0	0	0	0	
G	0	0	1	1	1	1	1	
\mathbf{C}	0	0	1	1	1	1	2	
\mathbf{G}								
Т								
G								
\mathbf{C}								

→ ∃ →

Longest Common Subsequence

$$L[i,j] = \begin{cases} 0 & \text{if } i=0 \text{ or } j=0\\ L[i-1,j-1]+1 & \text{if } i,j>0 \text{ and } X_i = Y_j\\ \max(L[i,j-1], L[i-1,j]) & \text{if } i,j>0 \text{ and } X_i \neq Y_j \end{cases}$$
(15)

	Ø	А	G	G	Т	А	\mathbf{C}
Ø	0	0	0	0	0	0	0
G	0	0	1	1	1	1	1
\mathbf{C}	0	0	1	1	1	1	2
G	0	0	1	2	2	2	2
Т							
G							
С							

→ ∃ →

Longest Common Subsequence

$$L[i,j] = \begin{cases} 0 & \text{if } i=0 \text{ or } j=0\\ L[i-1,j-1]+1 & \text{if } i,j>0 \text{ and } X_i = Y_j\\ \max(L[i,j-1], L[i-1,j]) & \text{if } i,j>0 \text{ and } X_i \neq Y_j \end{cases}$$
(15)

	Ø	А	G	G	Т	А	\mathbf{C}
Ø	0	0	0	0	0	0	0
G	0	0	1	1	1	1	1
\mathbf{C}	0	0	1	1	1	1	2
G	0	0	1	2	2	2	2
Т	0	0	1	2	3	3	3
G							
С							

< ∃ ►

Longest Common Subsequence

$$L[i,j] = \begin{cases} 0 & \text{if } i=0 \text{ or } j=0\\ L[i-1,j-1]+1 & \text{if } i,j>0 \text{ and } X_i = Y_j\\ \max(L[i,j-1], L[i-1,j]) & \text{if } i,j>0 \text{ and } X_i \neq Y_j \end{cases}$$
(15)

	Ø	А	G	G	Т	А	\mathbf{C}
Ø	0	0	0	0	0	0	0
G	0	0	1	1	1	1	1
С	0	0	1	1	1	1	2
G	0	0	1	2	2	2	2
Т	0	0	1	2	3	3	3
G	0	0	1	2	3	3	3
С							

 $\exists \mapsto$

Longest Common Subsequence

$$L[i,j] = \begin{cases} 0 & \text{if } i=0 \text{ or } j=0\\ L[i-1,j-1]+1 & \text{if } i,j>0 \text{ and } X_i = Y_j\\ \max(L[i,j-1], L[i-1,j]) & \text{if } i,j>0 \text{ and } X_i \neq Y_j \end{cases}$$
(15)

	Ø	А	G	G	Т	А	\mathbf{C}
Ø	0	0	0	0	0	0	0
G	0	0	1	1	1	1	1
С	0	0	1	1	1	1	2
G	0	0	1	2	2	2	2
Т	0	0	1	2	3	3	3
G	0	0	1	2	3	3	3
\mathbf{C}	0	0	1	2	3	3	4

 $\exists \cdot \mid \cdot \mid$

Longest Common Subsequence

$$L[i,j] = \begin{cases} 0 & \text{if } i=0 \text{ or } j=0\\ L[i-1,j-1]+1 & \text{if } i,j>0 \text{ and } X_i = Y_j\\ \max(L[i,j-1], L[i-1,j]) & \text{if } i,j>0 \text{ and } X_i \neq Y_j \end{cases}$$
(15)

	Ø	А	G	G	Т	А	\mathbf{C}
Ø	0	0	0	0	0	0	0
G	0	0	1	1	1	1	1
С	0	0	1	1	1	1	2
G	0	0	1	2	2	2	2
Т	0	0	1	2	3	3	3
G	0	0	1	2	3	3	3
С	0	0	1	2	3	3	4

< 3 > >

Longest Common Subsequence

$$L[i,j] = \begin{cases} 0 & \text{if } i=0 \text{ or } j=0\\ L[i-1,j-1]+1 & \text{if } i,j>0 \text{ and } X_i = Y_j\\ \max(L[i,j-1], L[i-1,j]) & \text{if } i,j>0 \text{ and } X_i \neq Y_j \end{cases}$$
(15)

	Ø	А	G	G	Т	А	\mathbf{C}
Ø	0	0	0	0	0	0	0
G	0	0	1	1	1	1	1
С	0	0	1	1	1	1	2
G	0	0	1	2	2	2	2
Т	0	0	1	2	3	3	3
G	0	0	1	2	3	3	3
\mathbf{C}	0	0	1	2	3	3	4

< 프 ► Ξ

Longest Common Subsequence

$$L[i,j] = \begin{cases} 0 & \text{if } i=0 \text{ or } j=0\\ L[i-1,j-1]+1 & \text{if } i,j>0 \text{ and } X_i = Y_j\\ \max(L[i,j-1], L[i-1,j]) & \text{if } i,j>0 \text{ and } X_i \neq Y_j \end{cases}$$
(15)

	Ø	А	G	G	Т	А	\mathbf{C}
Ø	0	0	0	0	0	0	0
G	0	0	1	1	1	1	1
С	0	0	1	1	1	1	2
G	0	0	1	2	2	2	2
Т	0	0	1	2	3	3	3
G	0	0	1	2	3	3	3
\mathbf{C}	0	0	1	2	3	3	4

Ξ

< 3 b

Longest Common Subsequence

$$L[i,j] = \begin{cases} 0 & \text{if } i=0 \text{ or } j=0\\ L[i-1,j-1]+1 & \text{if } i,j>0 \text{ and } X_i = Y_j\\ \max(L[i,j-1], L[i-1,j]) & \text{if } i,j>0 \text{ and } X_i \neq Y_j \end{cases}$$
(15)

	Ø	А	G	G	Т	А	\mathbf{C}
Ø	0	0	0	0	0	0	0
G	0	0	1	1	1	1	1
С	0	0	1	1	1	1	2
G	0	0	1	2	2	2	2
Т	0	0	1	2	3	3	3
G	0	0	1	2	3	3	3
С	0	0	1	2	3	3	4

43/82

< ∃ ►

Longest Common Subsequence

$$L[i,j] = \begin{cases} 0 & \text{if } i=0 \text{ or } j=0\\ L[i-1,j-1]+1 & \text{if } i,j>0 \text{ and } X_i = Y_j\\ \max(L[i,j-1], L[i-1,j]) & \text{if } i,j>0 \text{ and } X_i \neq Y_j \end{cases}$$
(15)

The LCS may not be unique

Ξ

< 3 > >

Longest Common Subsequence for RS

- 1: **procedure** LCS_RECSYS (u, v, f, δ) \triangleright The LCS of users u and v applying transformation f
- 2: $(x,y) \leftarrow (f(u), f(v))$ \triangleright String x contains m symbols

3:
$$L[0\cdots m, 0\cdots n] \leftarrow 0$$

- 4: for $i \leftarrow 1, m$ do
 - for $j \leftarrow 1, n$ do \triangleright There is a δ -matching
- 6: **if** $match(x_i, y_j, \delta)$ **then**

7:
$$L[i,j] \leftarrow L[i-1,j-1] + 1$$

8: else

5:

9:
$$L[i,j] \leftarrow \max(L[i,j-1], L[i-1,j])$$

- 10: end if
- 11: **end for**
- 12: **end for**
- 13: return L[m, n]
- 14: end procedure

Longest Common Subsequence for RS

1: procedure LCS_RECSYS (u, v, f, δ) \triangleright The LCS of users uand v applying transformation f $[(x,y) \leftarrow (f(u), f(v))]$ \triangleright String x contains m symbols 2: $L[0\cdots m, 0\cdots n] \leftarrow 0$ 3: 4: for $i \leftarrow 1, m$ do for $j \leftarrow 1, n$ do \triangleright There is a δ -matching 5: if match (x_i, y_i, δ) then 6: $L[i, j] \leftarrow L[i-1, j-1] + 1$ 7: else 8: $L[i, j] \leftarrow \max(L[i, j-1], L[i-1, j])$ 9: end if 10:end for 11: end for 12:return L[m,n]13:14: end procedure

Longest Common Subsequence for RS

- 1: **procedure** LCS_RECSYS (u, v, f, δ) \triangleright The LCS of users u and v applying transformation f
- 2: $(x,y) \leftarrow (f(u), f(v))$ \triangleright String x contains m symbols

3:
$$L[0\cdots m, 0\cdots n] \leftarrow 0$$

for $j \leftarrow 1, n$ do

4: for $i \leftarrow 1, m$ do

 \triangleright There is a $\delta\text{-matching}$

6:
$$\mathbf{if}(\underline{\mathsf{match}}(x_i, y_j, \delta))$$
then
7: $L[i, j] \leftarrow L[i-1, j-1] + 1$

8: **else**

5:

9:
$$L[i,j] \leftarrow \max(L[i,j-1], L[i-1,j])$$

- 10: end if
- 11: **end for**
- 12: **end for**
- 13: return L[m, n]
- 14: end procedure

LCS normalizations

• LCS algorithm obtain values in the $[0,\min(|f(u)|,|f(v)|)]$ interval

$$\sin_{1}^{f,\delta}(u,v) = \text{LCS}_{\text{Recsys}}(u,v,f,\delta)$$
(16)

→ ∃ →

LCS normalizations

• LCS algorithm obtain values in the $[0,\min(|f(u)|,|f(v)|)]$ interval

$$\sin_{1}^{f,\delta}(u,v) = \text{LCS}_{\text{Recsys}}(u,v,f,\delta)$$
(16)

$$sim_{2}^{f,\delta}(u,v) = \frac{sim_{1}^{f,\delta}(u,v)^{2}}{|f(u)| \cdot |f(v)|}$$
(17)
$$sim_{3}^{f,\delta}(u,v) = \frac{2 \cdot sim_{1}^{f,\delta}(u,v)}{|f(u)| + |f(v)|}$$
(18)
$$sim_{4}^{f,\delta}(u,v) = \frac{sim_{1}^{f,\delta}(u,v)}{max(|f(u)|, |f(v)|)}$$
(19)
$$sim_{5}^{f,\delta}(u,v) = \frac{sim_{1}^{f,\delta}(u,v)}{min(|f(u)|, |f(v)|)}$$
(20)

Redefining k-NN recommender systems

Redefining k-NN RS: Backward-Forward algorithm

• Obtain the neighbors using any similarity metric (classical or sequential)

Image: A matching of the second se

Redefining k-NN RS: Backward-Forward algorithm

- Obtain the neighbors using any similarity metric (classical or sequential)
- Find the last common interactions between the user and her neighbors

Redefining k-NN RS: Backward-Forward algorithm

- Obtain the neighbors using any similarity metric (classical or sequential)
- Find the last common interactions between the user and her neighbors

PhD dissertation July 8, 2021

ATTRIBUTES, SEQUENCES, AND TIME IN RS

47/82

Backward-Forward algorithm (2)

18/82

프 > 프

Backward-Forward algorithm (2)

$$\begin{split} L_{2}^{+}(v_{1};u) &= (i_{14},i_{13}), L_{2}^{-}(v_{1};u) = (i_{6},i_{2}) \\ L_{2}^{+}(v_{2};u) &= (i_{12},i_{13}), L_{2}^{-}(v_{2};u) = (i_{2}) \\ L_{2}^{+}(v_{3};u) &= (i_{12},i_{15}), L_{2}^{-}(v_{3};u) = (i_{5},i_{6}) \\ &= 1 \\ L_{2}^{+}(v_{3};u) = (i_{12},i_{15}), L_{2}^{-}(v_{3};u) = (i_{5},i_{6}) \\ &= 1 \\ L_{2}^{+}(v_{3};u) = (i_{12},i_{15}), L_{2}^{-}(v_{3};u) = (i_{5},i_{6}) \\ &= 1 \\ L_{2}^{+}(v_{3};u) = (i_{12},i_{15}), L_{2}^{-}(v_{3};u) = (i_{5},i_{6}) \\ &= 1 \\ L_{2}^{+}(v_{3};u) = (i_{12},i_{15}), L_{2}^{-}(v_{3};u) = (i_{5},i_{6}) \\ &= 1 \\ L_{2}^{+}(v_{3};u) = (i_{12},i_{15}), L_{2}^{-}(v_{3};u) = (i_{5},i_{6}) \\ &= 1 \\ L_{2}^{+}(v_{3};u) = (i_{12},i_{15}), L_{2}^{-}(v_{3};u) = (i_{5},i_{6}) \\ &= 1 \\ L_{2}^{+}(v_{3};u) = (i_{12},i_{15}), L_{2}^{-}(v_{3};u) = (i_{5},i_{6}) \\ &= 1 \\ L_{2}^{+}(v_{3};u) = (i_{12},i_{15}), L_{2}^{-}(v_{3};u) = (i_{5},i_{6}) \\ &= 1 \\ L_{2}^{+}(v_{3};u) = (i_{12},i_{15}), L_{2}^{-}(v_{3};u) = (i_{5},i_{6}) \\ &= 1 \\ L_{2}^{+}(v_{3};u) = (i_{12},i_{15}), L_{2}^{-}(v_{3};u) = (i_{15},i_{6}) \\ &= 1 \\ L_{2}^{+}(v_{3};u) = (i_{12},i_{15}), L_{2}^{-}(v_{3};u) = (i_{15},i_{6}) \\ &= 1 \\ L_{2}^{+}(v_{3};u) = (i_{12},i_{15}), L_{2}^{-}(v_{3};u) = (i_{15},i_{6}) \\ &= 1 \\ L_{2}^{+}(v_{3};u) = (i_{12},i_{15}), L_{2}^{-}(v_{3};u) = (i_{15},i_{6}) \\ &= 1 \\ L_{2}^{+}(v_{15},v_{15}), L_{2}^{+}(v_{15},v_{15}), L_{2}^{-}(v_{15},v_{15}), L_{2}^{+}(v_{15},v_{15}), L_{2}^{+}(v_{15$$

Backward-Forward algorithm (2)

Backward-Forward algorithm (3)

- Normalize the rankings obtained for each neighbor
 - Standard normalization: $x' = \frac{x x_{min}}{x_{min} x_{max}}$
 - Rank normalization: $x' = 1 \frac{rank(x)-1}{|X|}$
 - Default normalization: x' = x
 - Other

Backward-Forward algorithm (3)

- Normalize the rankings obtained for each neighbor
 - Standard normalization: $x' = \frac{x x_{min}}{x_{min} x_{max}}$
 - Rank normalization: $x' = 1 \frac{rank(x)-1}{|X|}$
 - Default normalization: x' = x
 - Other
- Generate a single list for each user using her neighbors rankings
 - Sum combiner
 - Min combiner
 - Max combiner
 - Other
Backward-Forward algorithm (4)

 $BF_2^+ = \{i_{12}, i_{13}\}$

 $BF_2^- = \{i_2, i_6\}$

3.5 3

• Objective: test our BF approaches in datasets with realistic timestamps following a temporal split

- Objective: test our BF approaches in datasets with realistic timestamps following a temporal split
- Foursquare from [He and McAuley, 2016] and MovieTweetings from [Dooms et al., 2016].

- Objective: test our BF approaches in datasets with realistic timestamps following a temporal split
- Foursquare from [He and McAuley, 2016] and MovieTweetings from [Dooms et al., 2016].
- Temporal split: per user vs system

- Objective: test our BF approaches in datasets with realistic timestamps following a temporal split
- Foursquare from [He and McAuley, 2016] and MovieTweetings from [Dooms et al., 2016].
- Temporal split: per user vs system

Dataset	\mathbf{Users}	Items	Ratings	Density	Scale	Unique times	Time interval
Foursquare	16k	3k	105k	0.205%	1	102k	Dec 2011 - Apr 2012
MovieTweetings	15k	8k	519k	0.399%	0-10	517k	Feb 2013 - Apr 2017

Experiments: BF. Temporal System. All metrics @5

• Relevance (nDCG), novelty (EPC), temporal-novelty (MIN), diversity (IC)

Recommender	nDCG	EPC	MIN	IC										
Rnd	0.001	†0.996	0.410	† 0.94 9										
Rnd _{CF}	0.000	0.996	0.411	0.900										
Pop	0.003	0.853	0.207	0.006										
Pop_{CF}	0.003	0.854	0.210	0.006										
IB	0.010	0.914	0.585	0.126										
UB	0.016	0.907	0.585	0.030										
HKV	0.024	0.934	0.573	0.081										
BPRMF	0.016	0.923	0.579	0.125										
TD	0.023	0.916	0.697	0.053										
BFUB	0.031	0.927	0.728	0.077										
BFsUB	0.034	0.936	$^{\dagger 0.828}$	0.076										
MC	0.031	0.919	0.707	0.043										
FPMC	0.020	0.913	0.634	0.040										
Fossil	0.025	0.915	0.647	0.028										
Caser	0.026	0.939	0.771	0.129										
Skyline	0.806	0.977	0.588	0.295										
Skyline _{CF}	$^{\dagger 0.812}$	0.977	0.616	0.251										

h /	r	• 1	T I	•
11/		710	L'weet	ings
1 V		V I V /	1 W C C C C	1120

I	ours	quar	0	
Recommender	nDCG	EPC	MIN	IC
Rnd	0.001	0.998	0.615	†1.000
Rnd_{CF}	0.001	†0.998	0.612	1.000
Pop	0.130	0.879	0.515	0.004
Pop _{CF}	0.130	0.879	0.515	0.004
IB	0.155	0.952	0.613	0.828
UB	0.173	0.929	0.573	0.293
HKV	0.154	0.949	0.585	0.029
BPRMF	0.146	0.886	0.511	0.071
TD	0.170	0.929	0.582	0.307
BFUB	0.173	0.929	0.573	0.293
BFsUB	0.174	0.921	0.569	0.281
MC	0.133	0.945	0.624	0.269
FPMC	0.133	0.935	0.608	0.196
Fossil	0.163	0.938	0.624	0.131
Caser	0.170	0.929	0.610	0.301
Skyline	†0.998	0.960	†0.6 7 1	0.577
Skyline _{CF}	0.998	0.960	0.670	0.573

Foursquare

→ + Ξ → ...

Experiments: BF. Temporal System. All metrics @5

• Sequential recommenders highly competitive in MovieTweetings but not in Foursquare

movierweetings						rours	quar	C	
Recommender	nDCG	EPC	MIN	IC	Recomme	nder nDCG	EPC	MIN	IC
Rnd	0.001	†0.996	0.410	† 0.949	Rnd	0.001	0.998	0.615	†1.000
Rnd _{CF}	0.000	0.996	0.411	0.900	Rnd _{CF}	0.001	+0.998	0.612	1.000
Pop	0.003	0.853	0.207	0.006	Pop	0.130	0.879	0.515	0.004
Pop_{CF}	0.003	0.854	0.210	0.006	Pop _{CF}	0.130	0.879	0.515	0.004
IB	0.010	0.914	0.585	0.126	IB	0.155	0.952	0.613	0.828
UB	0.016	0.907	0.585	0.030	UB	0.173	0.929	0.573	0.293
HKV	0.024	0.934	0.573	0.081	HKV	0.154	0.949	0.585	0.029
BPRMF	0.016	0.923	0.579	0.125	BPRM	F 0.146	0.886	0.511	0.071
TD	0.023	0.916	0.697	0.053	TD	0.170	0.929	0.582	0.307
BFUB	0.031	0.927	0.728	0.077	BFUB	0.173	0.929	0.573	0.293
BFsUB	0.034	0.936	+0.828	0.076	BFsUE	0.174	0.921	0.569	0.281
MC	0.031	0.919	0.707	0.043	MC	0.133	0.945	0.624	0.269
FPMC	0.020	0.913	0.634	0.040	FPMC	0.133	0.935	0.608	0.196
Fossil	0.025	0.915	0.647	0.028	Fossil	0.163	0.938	0.624	0.131
Caser	0.026	0.939	0.771	0.129	Caser	0.170	0.929	0.610	0.301
Skyline	0.806	0.977	0.588	0.295	Skyline	+0.998	0.960	†0.671	0.577
$Skyline_{CF}$	$^{\dagger 0.812}$	0.977	0.616	0.251	Skyline	_F 0.998	0.960	0.670	0.573

MovieTweetings

Foursquare

Experiments: BF. Temporal System. All metrics @5

• Our Backward-Forward approaches are the best in terms of relevance and competitive in other dimensions

Foursquare

				-	ours	quar	0		
Recommender	nDCG	EPC	MIN	IC	Recommender	nDCG	EPC	MIN	IC
Rnd	0.001	†0.996	0.410	† 0.949	Rnd	0.001	0.998	0.615	†1.000
Rnd _{CF}	0.000	0.996	0.411	0.900	Rnd _{CF}	0.001	$^{+0.998}$	0.612	1.000
Pop	0.003	0.853	0.207	0.006	Pop	0.130	0.879	0.515	0.004
Pop _{CF}	0.003	0.854	0.210	0.006	Pop _{CF}	0.130	0.879	0.515	0.004
IB	0.010	0.914	0.585	0.126	IB	0.155	0.952	0.613	0.828
UB	0.016	0.907	0.585	0.030	UB	0.173	0.929	0.573	0.293
HKV	0.024	0.934	0.573	0.081	HKV	0.154	0.949	0.585	0.029
BPRMF	0.016	0.923	0.579	0.125	BPRMF	0.146	0.886	0.511	0.071
TD	0.023	0.916	0.697	0.053	TD	0.170	0.929	0.582	0.307
BFUB	0.031	0.927	0.728	0.077	BFUB	0.173	0.929	0.573	0.293
BFsUB	0.034	0.936	†0.828	0.076	BFsUB	0.174	0.921	0.569	0.281
MC	0.031	0.919	0.707	0.043	MC	0.133	0.945	0.624	0.269
FPMC	0.020	0.913	0.634	0.040	FPMC	0.133	0.935	0.608	0.196
Fossil	0.025	0.915	0.647	0.028	Fossil	0.163	0.938	0.624	0.131
Caser	0.026	0.939	0.771	0.129	Caser	0.170	0.929	0.610	0.301
Skyline	0.806	0.977	0.588	0.295	Skyline	†0.998	0.960	†0.6 7 1	0.577
Skyline _{CF}	$^{\dagger 0.812}$	0.977	0.616	0.251	Skyline _{CF}	0.998	0.960	0.670	0.573

MovieTweetings

PhD dissertation July 8, 2021 ATTRIBUTES, SEQUENCES, AND TIME IN RS

Experiments: BF. Temporal Per User. All metrics @5.

• Sequential recommenders are less competitive in this split for both datasets

INIO	vierv	veetn	.igs	
ecommender	nDCG	EPC	MIN	IC
Rnd	0.000	†0.996	0.383	0.980
Rnd _{CF}	0.000	0.996	0.383	+0.980
Pop	0.024	0.870	0.159	0.005
Pop_{CF}	0.024	0.870	0.159	0.005
IB	0.050	0.919	0.402	0.185
UB	0.049	0.910	0.360	0.038
HKV	0.050	0.934	0.367	0.075
BPRMF	0.037	0.933	0.363	0.218
TD	0.081	0.916	0.451	0.077
BFUB	0.070	0.918	0.424	0.054
BFsUB	0.111	0.928	0.518	0.086
MC	0.062	0.905	0.436	0.073
FPMC	0.038	0.913	0.365	0.065
Fossil	0.050	0.909	0.386	0.045
Caser	0.083	0.928	0.483	0.158
Skyline	† 1 .000	0.962	+0.525	0.260
Skyline _{CF}	1.000	0.962	†0.525	0.260

MovieTweetings

Fourgasiano

Experiments: BF. Temporal Per User. All metrics @5.

• Our Backward-Forward approaches are still competitive against state-of-the-art algorithms

MO	MOVIE1 weetings					ourse	fuare		
Recommender	nDCG	EPC	MIN	IC	Recommender	nDCG	EPC	MIN	
Rnd	0.000	†0.996	0.383	0.980	Rnd	0.001	0.998	0.540	†1
Rnd _{CF}	0.000	0.996	0.383	+0.980	Rnd _{CF}	0.002	†0.998	0.538	1.
Pop	0.024	0.870	0.159	0.005	Pop	0.133	0.878	0.501	0.
Pop _{CF}	0.024	0.870	0.159	0.005	Pop_{CF}	0.133	0.878	0.501	0.0
IB	0.050	0.919	0.402	0.185	IB	0.186	0.950	0.535	0.8
UB	0.049	0.910	0.360	0.038	UB	0.191	0.926	0.516	0.1
HKV	0.050	0.934	0.367	0.075	HKV	0.174	0.948	0.503	0.0
BPRMF	0.037	0.933	0.363	0.218	BPRMF	0.157	0.947	0.515	0.4
TD	0.081	0.916	0.451	0.077	TD	0.185	0.929	0.536	0.2
BFUB	0.070	0.918	0.424	0.054	BFUB	0.192	0.927	0.515	0.1
BFsUB	0.111	0.928	0.518	0.086	BFsUB	0.190	0.925	0.515	0.2
MC	0.062	0.905	0.436	0.073	MC	0.159	0.940	0.558	0.1
FPMC	0.038	0.913	0.365	0.065	FPMC	0.145	0.933	0.554	0.1
Fossil	0.050	0.909	0.386	0.045	Fossil	0.177	0.939	0.563	0.0
Caser	0.083	0.928	0.483	0.158	Caser	0.182	0.932	0.559	0.3
Skyline	†1.000	0.962	†0. 525	0.260	Skyline	†1.000	0.960	†0.568	0.6
Skyline _{CF}	1.000	0.962	+0.525	0.260	Skyline _{CF}	1.000	0.960	†0.568	0.6

MovioTwooting

► 4 Ξ ►

Fourseupro

• We have defined a **sequential similarity metric** based on the LCS algorithm

- We have defined a **sequential similarity metric** based on the LCS algorithm
- We have **redefined** the *k*-NN recommenders by exploiting the **last common interactions** between the neighbors named Backward-Forward (BF)

- We have defined a **sequential similarity metric** based on the LCS algorithm
- We have **redefined** the *k*-NN recommenders by exploiting the **last common interactions** between the neighbors named Backward-Forward (BF)
- Our Backward-Forward algorithm can be used with **any kind** of **similarity** (sequential or not sequential)

- We have defined a **sequential similarity metric** based on the LCS algorithm
- We have **redefined** the *k*-NN recommenders by exploiting the **last common interactions** between the neighbors named Backward-Forward (BF)
- Our Backward-Forward algorithm can be used with **any kind** of **similarity** (sequential or not sequential)
- Our approach is **highly competitive** in two datasets using a time-aware evaluation

- New perspectives for evaluating Recommender Systems
- \bigcirc Sequences in k-NN recommender systems
- Point-Of-Interest recommendation
- **5** Sequences in POI recommendation
- 6 Conclusions and future work

• We will address the objectives regarding the analysis of current POI recommendation works and improve the performance of POI recommenders

- We will address the objectives regarding the analysis of current POI recommendation works and improve the performance of POI recommenders
- We conduct a **survey** characterizing the POI recommendation works between 2011 and 2019

- We will address the objectives regarding the analysis of current POI recommendation works and improve the performance of POI recommenders
- We conduct a **survey** characterizing the POI recommendation works between 2011 and 2019
- We develop mechanisms to **increase the performance** of the recommenders in POI recommendation by using cross-domain techniques

- We will address the objectives regarding the analysis of current POI recommendation works and improve the performance of POI recommenders
- We conduct a **survey** characterizing the POI recommendation works between 2011 and 2019
- We develop mechanisms to **increase the performance** of the recommenders in POI recommendation by using cross-domain techniques
- Contributions under review in ACM Computing Surveys journal (2° round of review) and published in the Information Processing and Management journal [Sánchez and Bellogín, 2021] (new)

• Recommending **new venues** to the users when they arrive a city

- Recommending **new venues** to the users when they arrive a city
- Differences with classical recommendation:

→ ∃ →

- Recommending **new venues** to the users when they arrive a city
- Differences with classical recommendation:
 - Greater sparsity: Movielens20M (0.539%) and Netflix (1.177%) density vs Foursquare (0.0034%) and Gowalla (0.0047%) density

- Recommending **new venues** to the users when they arrive a city
- Differences with classical recommendation:
 - Greater sparsity: Movielens20M (0.539%) and Netflix (1.177%) density vs Foursquare (0.0034%) and Gowalla (0.0047%) density
 - Implicit and repeated interactions: users visit the same places more than once

- Recommending **new venues** to the users when they arrive a city
- Differences with classical recommendation:
 - Greater sparsity: Movielens20M (0.539%) and Netflix (1.177%) density vs Foursquare (0.0034%) and Gowalla (0.0047%) density
 - Implicit and repeated interactions: users visit the same places more than once
 - **External influences**: **geographical**, temporal, social, and sequential influences

Everything is related to everything else, but near things are more related than distant things —[Miller, 2004]

- Types of algorithms: based on similarities, factorization machines, neural networks, ...
- Information used: geographical, temporal, sequential, social, ...
- Evaluation methodology: metrics, splits, validation, datasets, ...

- Types of algorithms: based on similarities, factorization machines, neural networks, ...
- Information used: geographical, temporal, sequential, social, ...
- Evaluation methodology: metrics, splits, validation, datasets, ...

Source	Papers retrieved	Valid papers
Scopus ScienceDirect ACM	$\begin{array}{c} 321\\ 36\\ 46\end{array}$	238 22 24
Unique papers	347	244

- Types of algorithms: based on similarities, factorization machines, neural networks, ...
- Information used: geographical, temporal, sequential, social, ...
- Evaluation methodology: metrics, splits, validation, datasets, ...

Source	Papers retrieved	Valid papers
Scopus ScienceDirect	321 36	238 22
ACM	46	24
Unique papers	347	244

• More information in Chapter 3

	Details			Evalu	iation	configu	ration			Baselin	es	Sp	lit typ	be -	Split	level	
Year	Reference	Acronym	Filter data	Validation	Error	Ranking	Region Split	Check-in(✔) POI(𝒴)	Cold Start Analysis	C. Non Personalized	C. Personalized	Geographical	Random	Temporal	Other	System	Per User
2011	[Ye et al., 2011]	USG				1		X	1		1	1	1				1
2012	Levandoski et al., 2012	LARS					1	×				~	1			~	
2012	[Bao et al., 2012]	(N.A.)	1			1	1	×			1				1		
2013	[Yang et al., 2013]	LBSMF	1		1		1	1			1		1			~	
2013	[Liu et al., 2013]	GT-BNMF				1	1	1			1		1			1	
2013	Yuan et al., 2013	UTE+SE	~	1		1	1	×			1	~	~				~
2014	[Ying et al., 2014]	UPOI-Walk			1	1	1	?			1	1					
2014	[Yuan et al., 2014]	GTAG		1				×					~				~
2014	[Lian et al., 2014]	GeoMF	1			1		×			1		1				1
2015	[Yin et al., 2015]	LA-LDA		1		1		×	1			1	1				~
2015	[Li et al., 2015]	RankGeoFM		1		1	1	1			1	1		1			1
2015	[Zhang and Chow, 2015]	GeoSoCa					1	1						~		~	
2015	[Feng et al., 2015]	PRME-G	1	1		1	1	1		1	1			1		~	
2016	[Li et al., 2016]	ASMF	1			1	1	×	1		1	1		~			~
2016	[Zhao et al., 2016]	STELLAR	1			1		1			1			1		1	
2017	[Zhao et al., 2017]	Geo-Teaser						1						~			~
2017	[Yang et al., 2017]	PACE	1			1		1						1			~
2017	[Ren et al., 2017]	TGSC-PMF	1		1	1		1				~	1			~	
2018	[Ma et al., 2018]	SAE-NAD	1			1	1	×			1	1	1				1
2018	[Gao et al., 2018]	GeoEISo	1			1	1					1	1			~	
2018	[Wang et al., 2018]	GeoIE	1	1		1		1				1		~			1
2019	[Ying et al., 2019]	MEAP-T	1	1		1				1				1			
2019	[Si et al., 2019]	APRA-SA			1	1					1	1	1				1
2019	[Qian et al., 2019]	STA		1										1			
	Most Representative	s	24	10	5	38	23	C:21 P:16	7	3	30	26	18	17	1	13	22
	Total		135	37	22	229	135	C:150 P:66	27	29	147	142	123	82	14	101	104

• Most POI models use ranking based accuracy metrics

	Details			Eval	uation	configu	iration			Baselin	es	Sp	lit typ	e	Split	level	
Year	Reference	Acronym	Filter data	Validation	Error	Ranking	Region Split	Check-in(✓) POI(X)	Cold Start Analysis	C. Non Personalized	C. Personalized	Geographical	Random	Temporal	Other	System	Per User
2011	[Ye et al., 2011]	USG				1		X	1		1	1	1				1
2012	Levandoski et al., 2012	LARS		1			1	×			1		1				
2012	[Bao et al., 2012]	(N.A.)	1			1	1	×			1				1		
2013	[Yang et al., 2013]	LBSMF			1		1	1			1		1			 Image: A second s	
2013	[Liu et al., 2013]	GT-BNMF				1	1	1			1		1			1	
2013	[Yuan et al., 2013]	UTE+SE		1		1	1	×			1		1				$\overline{}$
2014	[Ying et al., 2014]	UPOI-Walk			1	1	1	?			1	1					
2014	Yuan et al., 2014	GTAG		1		~	~	×					~				$\overline{}$
2014	[Lian et al., 2014]	GeoMF	1			1		X			1		1				1
2015	[Yin et al., 2015]	LA-LDA		1		1		×					1				$\overline{}$
2015	[Li et al., 2015]	RankGeoFM		1		1	1	1			1	1		1			1
2015	Zhang and Chow, 2015	GeoSoCa				~	~							~			
2015	[Feng et al., 2015]	PRME-G	1	1		1	1	1		1	1			1		1	
2016	[Li et al., 2016]	ASMF	1	1		1	1	×	1		1			1			1
2016	Zhao et al., 2016	STELLAR	1			1		1			1			1		1	
2017	Zhao et al., 2017	Geo-Teaser		1		~								~			
2017	[Yang et al., 2017]	PACE	1			1		1				1		1			1
2017	[Ren et al., 2017]	TGSC-PMF	1	1	~	~		/					1			~	
2018	[Ma et al., 2018]	SAE-NAD	1			1	1	×			1	1	1				1
2018	Gao et al., 2018	GeoEISo		1		~		1					~				
2018	[Wang et al., 2018]	GeoIE	1	1		1		1	Í		1	1		1			1
2019	[Ying et al., 2019]	MEAP-T	1	1		~	1			1	1			1			1
2019	[Si et al., 2019]	APRA-SA			~	1		1			1	1	1				1
2019	[Qian et al., 2019]	STA		1		1								1			
	Most Representative	s	24	10	5	38	23	C:21 P:16	7	3	30	26	18	17	1	13	22
	Total		135	37	22	229	135	C:150 P:66	27	29	147	142	123	82	14	101	104

• Some researchers apply some data filtering

	Details	Evaluation configuration								Baselin	es	Sp	lit typ	Split level			
Year	Reference	Acronym	Filter data	Validation	Error	Ranking	Region Split	Check-in(✔) POI(𝒴)	Cold Start Analysis	C. Non Personalized	C. Personalized	Geographical	Random	Temporal	Other	System	Per User
2011	[Ye et al., 2011]	USG				1		X	1		1	1	1				1
2012	[Levandoski et al., 2012]	LARS					1	×			1	1	1			~	
2012	[Bao et al., 2012]	(N.A.)	1			1	1	×			1				1		
2013	[Yang et al., 2013]	LBSMF	1		1		1	1			1					1	
2013	[Liu et al., 2013]	GT-BNMF				1	1	1			1		1			1	
2013	Yuan et al., 2013	UTE+SE	1			1	1	×					1				~
2014	[Ying et al., 2014]	UPOI-Walk			1	1	1	?			1	1					
2014	Yuan et al., 2014	GTAG						×									~
2014	[Lian et al., 2014]	GeoMF	1	1		1		×			1		1				1
2015	[Yin et al., 2015]	LA-LDA		\checkmark		1		×	1			1	 Image: A set of the set of the				~
2015	[Li et al., 2015]	RankGeoFM		1		1	1	1			1	1	1	1			1
2015	[Zhang and Chow, 2015]	GeoSoCa						1						~		~	
2015	[Feng et al., 2015]	PRME-G	1	1		1	1	1		1	1			~		~	
2016	[Li et al., 2016]	ASMF	1			1	1	×	1		1	1		~			~
2016	[Zhao et al., 2016]	STELLAR	1			1		1			1		1	1		~	
2017	[Zhao et al., 2017]	Geo-Teaser												~			
2017	[Yang et al., 2017]	PACE	1	1		1		1				1		1			1
2017	[Ren et al., 2017]	TGSC-PMF	1		1	~		1				1	1			~	
2018	[Ma et al., 2018]	SAE-NAD	1			1	1	X			1	1	1				~
2018	[Gao et al., 2018]	GeoEISo														~	
2018	[Wang et al., 2018]	GeoIE	1	1		1		1				1		~			~
2019	[Ying et al., 2019]	MEAP-T	1	~		~	~	1		~	1			1			<
2019	[Si et al., 2019]	APRA-SA			1	1		1			1	1	1				1
2019	[Qian et al., 2019]	STA												1			
Most Representatives			24	10	5	38	23	C:21 P:16	7	- 3	30	26	18	17	1	13	22
	Total		135	37	22	229	135	C:150 P:66	27	29	147	142	123	82	14	101	104

• It is not common to use a validation split

Details					Eval	uation	configu	iration		Baselin	es	Sp	lit typ	Split level			
	0		ta				plit	ŝ	rt Analysis	ersonalized	nalized	nical					
Year	Referenc	Acronym	Filter da	Validatic	Error	Ranking	Region S	Check-in POI(X)	Cold Sta	C. Non F	C. Persol	Geograpl	Random	Tempora	Other	System	Per User
2011	[Ye et al., 2011]	USG				1		X	1		1	1	1				1
2012	[Levandoski et al., 2012]	LARS						×					1				
2012	[Bao et al., 2012]	(N.A.)	1			1	1	×			1				1		
2013	[Yang et al., 2013]	LBSMF	1		~		1	1			1		1			1	
2013	[Liu et al., 2013]	GT-BNMF				1	1	1			1		1			1	
2013	[Yuan et al., 2013]	UTE+SE	 / 	1		1	1	×				1	1				1
2014	[Ying et al., 2014]	UPOI-Walk			~	-	~	?			1	 Image: A set of the set of the					
2014	[Yuan et al., 2014]	GTAG	/	1		~	1	X					1				1
2014	[Lian et al., 2014]	GeoMF	1			1		×			1		1				1
2015	[Yin et al., 2015]	LA-LDA		1		1		×	1			1	1				1
2015	[Li et al., 2015]	RankGeoFM		1		1	1	1			1	1		~			1
2015	[Zhang and Chow, 2015]	GeoSoCa				/								-		~	
2015	[Feng et al., 2015]	PRME-G	1	1		1	1	1		1	1			~		1	
2016	[Li et al., 2016]	ASMF	1			1	1	×			1	1		~			~
2016	[Zhao et al., 2016]	STELLAR	1			1		1			1			~		1	
2017	[Zhao et al., 2017]	Geo-Teaser	1			1								~			1
2017	[Yang et al., 2017]	PACE	1			1		1						~			1
2017	[Ren et al., 2017]	TGSC-PMF	1		~	1		1				1	1			~	
2018	[Ma et al., 2018]	SAE-NAD	1			1	1	×			1	1	1				1
2018	[Gao et al., 2018]	GeoEISo	1			1	1						1			1	
2018	[Wang et al., 2018]	GeoIE	1	1		1		1						~			1
2019	[Ying et al., 2019]	MEAP-T	1	1		1	1	1		1	1			~			1
2019	[Si et al., 2019]	APRA-SA			1	1					1		1				1
2019	[Qian et al., 2019]	STA												1			
Most Representatives			24	10	5	38	23	C:21 P:16	7	3	30	26	18	17	1	13	22
Total			135	37	22	229	135	C:150 P:66	27	29	147	142	123	82	14	101	104

• No standard procedure for evaluating the models

	Details	Evaluation configuration								Baselin	es	Sp	lit typ	Split level			
Year	Reference	Acronym	Filter data	Validation	Error	Ranking	Region Split	Check-in(✔) POI(𝒴)	Cold Start Analysis	C. Non Personalized	C. Personalized	Geographical	Random	Temporal	Other	System	Per User
2011	[Ye et al., 2011]	USG				1		X	1	i	1	1					1
2012	Levandoski et al., 2012	LARS				-		×			-	-	-			~	-
2012	[Bao et al., 2012]	(N.A.)	1			1	1	X			1				1		
2013	[Yang et al., 2013]	LBSMF	1		1		1	1			1		1			~	
2013	[Liu et al., 2013]	GT-BNMF				1	1	1			1		1			1	
2013	Yuan et al., 2013	UTE+SE						X		i –			~				 Image: A start of the start of
2014	[Ying et al., 2014]	UPOI-Walk			1	1	1	?			1	1					
2014	[Yuan et al., 2014]	GTAG	1	1		1	1	X			1	1	1				1
2014	[Lian et al., 2014]	GeoMF	1			1		X			1		1				1
2015	[Yin et al., 2015]	LA-LDA						X					~				1
2015	[Li et al., 2015]	RankGeoFM	[1		1	1	1	Í		1	1		1			1
2015	[Zhang and Chow, 2015]	GeoSoCa				1	1	1				1		~		~	
2015	[Feng et al., 2015]	PRME-G	1	1		1	1	1		1	1			1		1	
2016	[Li et al., 2016]	ASMF						X						~			1
2016	[Zhao et al., 2016]	STELLAR	1			1		1			1			1		~	
2017	[Zhao et al., 2017]	Geo-Teaser	~			1								~			1
2017	[Yang et al., 2017]	PACE	1			1		1				1		1			1
2017	[Ren et al., 2017]	TGSC-PMF	1		1								1			~	
2018	[Ma et al., 2018]	SAE-NAD	1			1	1	X			1	1	1				1
2018	[Gao et al., 2018]	GeoEISo	1			1	1	1			1		1			~	
2018	[Wang et al., 2018]	GeoIE	1	1		1		1				1		1			
2019	[Ying et al., 2019]	MEAP-T	1	1			1			1				~			1
2019	[Si et al., 2019]	APRA-SA			~	1					-	1	~				<u> </u>
2019	[Qian et al., 2019]	STA		/	_	/								~			/
Most Representatives			24	10	5	38	23	C:21 P:16	7	3	30	26	18	17	1	13	22
	Total		135	37	22	229	135	C:150 P:66	27	29	147	142	123	82	14	101	104
							U										

• Some researchers use some kind of region/city split

Improving POI recommendation performance

• Some researchers tend to consider each city/region as an independent dataset (same city/region for training and test)

Training with one city and test with the same city

Improving POI recommendation performance

• Some researchers tend to consider each city/region as an independent dataset (same city/region for training and test)

Training with one city and test with the same city Training with many cities and test with one city

• We propose different strategies to select the training cities: based on distance (N-MCA and C-MCA) and based on the number of check-ins (most popular, P-MCA)

Experiments: POI recommendation

• Objective: test our MCA strategies in a LBSN dataset

Experiments: POI recommendation

- Objective: test our MCA strategies in a LBSN dataset
- 8 different cities from the Global-scale check-in dataset [Yang et al., 2016]: Istanbul, Jakarta, Kuala Lumpur, Mexico City, Moscow, Santiago, São Paulo and Tokyo
Experiments: POI recommendation

- Objective: test our MCA strategies in a LBSN dataset
- 8 different cities from the Global-scale check-in dataset [Yang et al., 2016]: Istanbul, Jakarta, Kuala Lumpur, Mexico City, Moscow, Santiago, São Paulo and Tokyo
- Temporal system split

Experiments: POI recommendation

- Objective: test our MCA strategies in a LBSN dataset
- 8 different cities from the Global-scale check-in dataset [Yang et al., 2016]: Istanbul, Jakarta, Kuala Lumpur, Mexico City, Moscow, Santiago, São Paulo and Tokyo
- Temporal system split
- **3 different MCA** strategies: the test set is always formed by the target city

Experiments: POI recommendation

- Objective: test our MCA strategies in a LBSN dataset
- 8 different cities from the Global-scale check-in dataset [Yang et al., 2016]: Istanbul, Jakarta, Kuala Lumpur, Mexico City, Moscow, Santiago, São Paulo and Tokyo
- Temporal system split
- **3 different MCA** strategies: the test set is always formed by the target city
- 2 different groups of users: tourists and locals

• Families: Geo, CF-NN, CF-MF, POI, H-POI

• N-MCA (closest), C-MCA (country), P-MCA (popular)

• N-MCA and C-MCA increase relevance

• P-MCA sometimes decreases relevance

• Great differences between tourists and locals

Experiments: popularity bias in tourists

• Tourist tend to visit the most popular venues

• Most POI recommendation algorithms are not comparable between them

- Most POI recommendation algorithms are not comparable between them
- POI recommendation is highly affected by the geographical influence and its sparsity

- Most POI recommendation algorithms are not comparable between them
- POI recommendation is highly affected by the geographical influence and its sparsity
- We can **improve** the **performance** of the recommenders by using **multi-city aggregation** strategies

- Most POI recommendation algorithms are not comparable between them
- POI recommendation is highly affected by the geographical influence and its sparsity
- We can **improve** the **performance** of the recommenders by using **multi-city aggregation** strategies
- Quality over quantity (of the data)

- New perspectives for evaluating Recommender Systems
- \bigcirc Sequences in k-NN recommender systems
- Point-Of-Interest recommendation
- **5** Sequences in POI recommendation
- 6 Conclusions and future work

• We address the last objective: **generate routes** from POI data

- We address the last objective: **generate routes** from POI data
- We use data from **different sources** (Foursquare, Tripbuilder, and SemanticTrails)

- We address the last objective: **generate routes** from POI data
- We use data from **different sources** (Foursquare, Tripbuilder, and SemanticTrails)
- We apply **reranking techniques** to generate routes

- We address the last objective: **generate routes** from POI data
- We use data from **different sources** (Foursquare, Tripbuilder, and SemanticTrails)
- We apply **reranking techniques** to generate routes
- **Contributions published** in User Modeling and User-Adapted Interaction [Sánchez and Bellogín, 2020a] journal

• From LBSN like Foursquare or Gowalla

Each color represents a user

• From LBSN like Foursquare or Gowalla

Each color represents a user

• From LBSN like Foursquare or Gowalla

Each color represents a user

• From LBSN like Foursquare or Gowalla

Each color represents a user

$$f_{obj}(u, i, R_u) = \lambda \cdot f_{rec}(u, i) + (1 - \lambda) \cdot f_{seq}(u, i, R_u)$$

$$f_{obj}(u, i, R_u) = \lambda \cdot f_{rec}(u, i) + (1 - \lambda) \cdot f_{seq}(u, i, R_u)$$

• We propose three different families of rerankers:

$$f_{obj}(u, i, R_u) = \lambda \cdot f_{rec}(u, i) + (1 - \lambda) \cdot f_{seq}(u, i, R_u)$$

- We propose three different families of rerankers:
 - 1. Independent
 - Random: $f_{seq}^{rnd}(u, i, R_u) = \text{rnd} \in [0, 1]$
 - Recommender-based: $f_{seq}^{rec}(u, i, R_u) = r(u, i)$

$$f_{obj}(u, i, R_u) = \lambda \cdot f_{rec}(u, i) + (1 - \lambda) \cdot f_{seq}(u, i, R_u)$$

- We propose three different families of rerankers:
 - 1. Independent
 - Random: $f_{seq}^{rnd}(u, i, R_u) = \text{rnd} \in [0, 1]$
 - Recommender-based: $f_{seq}^{rec}(u, i, R_u) = r(u, i)$
 - 2. Dependent on the last item
 - Distance: $f_{seq}^{dist}(u, i, R_u) = 1/dist(i_{n-1}, i)$
 - Feature Markov Chain: $f_{seq}^{feat}(u, i, R_u) = p(i^a | i_{n-1}^a)$
 - Item Markov Chain: $f_{seq}^{item}(u, i, R_u) = p(i|i_{n-1})$

$$f_{obj}(u, i, R_u) = \lambda \cdot f_{rec}(u, i) + (1 - \lambda) \cdot f_{seq}(u, i, R_u)$$

- We propose three different families of rerankers:
 - 1. Independent
 - Random: $f_{seq}^{rnd}(u, i, R_u) = \text{rnd} \in [0, 1]$
 - Recommender-based: $f_{seq}^{rec}(u, i, R_u) = r(u, i)$
 - 2. Dependent on the last item
 - Distance: $f_{seq}^{dist}(u, i, R_u) = 1/dist(i_{n-1}, i)$
 - Feature Markov Chain: $f_{seq}^{feat}(u, i, R_u) = p(i^a | i_{n-1}^a)$
 - Item Markov Chain: $f_{seq}^{item}(u, i, R_u) = p(i|i_{n-1})$
 - 3. Dependent on the whole sequence
 - LCS-based: $f_{seq}^{lcs}(u, i, R_u) = lcs((R_u + i)^a, u^a)$
 - Suffix tree: $f_{seq}^{stree}(u, i, R_u) = \delta_{ST(u^a)}(\{(R_u + i)^a\}_m)$
 - Oracle: $f_{seq}^{oracle}(u, i, R_u) = order_{test}(u, i)$

 $\begin{aligned} f_{seq}^{lcs} & \mathrm{M}_4 \to \mathrm{P}_5 \to \mathrm{R}_3 \to \mathrm{P}_8 \quad f_{seq}^{dist} & \mathrm{M}_4 \to \mathrm{P}_5 \to \mathrm{P}_8 \to \mathrm{R}_3 \to \mathrm{M}_2 \to \mathrm{R}_6 \\ f_{seq}^{stree} & \mathrm{M}_4 \to \mathrm{P}_5 \to \mathrm{R}_3 \qquad f_{seq}^{rec} & \mathrm{M}_4 \to \mathrm{R}_6 \to \mathrm{P}_5 \to \mathrm{R}_3 \to \mathrm{M}_2 \to \mathrm{P}_8 \end{aligned}$

Training Recommended venues First venue in the sequence Venue in test not recommended Test route of the user

69/82

 $\begin{array}{ccc} f_{seq}^{lcs} & \mathrm{M}_4 \to \mathrm{P}_5 \to \mathrm{R}_3 \to \mathrm{P}_8 & f_{seq}^{dist} & \mathrm{M}_4 \to \mathrm{P}_5 \to \mathrm{P}_8 \to \mathrm{R}_3 \to \mathrm{M}_2 \to \mathrm{R}_6 \\ f_{seq}^{stree} & \mathrm{M}_4 \to \mathrm{P}_5 \to \mathrm{R}_3 & & & & \\ f_{seq}^{oracle} & \mathrm{M}_4 \to \mathrm{P}_5 \to \mathrm{R}_3 \to \mathrm{M}_2 \to \mathrm{P}_8 \\ \hline & & & & \\ & & & \\ \hline & & & \\ & & & \\ \hline & & & \\ & & & \\ \hline & & & \\ & & & \\ \hline & & & \\ & & & \\ \hline & &$

69/82

Sequential evaluation

 $P(R_u^1) = P(R_u^2) = 3/5$

→ Ξ →

-

Ξ

Sequential evaluation

→ Ξ →

-

Ξ

$LCS(T_u, R_u^1)$	=	2
$LCS(T_u, R_u^2)$	=	3

Sequential evaluation

$$\mathbf{P}(R_u^1) = \mathbf{P}(R_u^2) = 3/5$$

$$LCS(T_u, R_u^1) = 2$$
$$LCS(T_u, R_u^2) = 3$$

$$\begin{aligned} {\rm P_s} \ (R_u^2) &= {\rm P}(R_u^2) = 3/5 \\ {\rm P_s} \ (R_u^1) &= 2/5 \end{aligned}$$

- 4 回 ト - 4 三 ト - 4 三 ト

Ξ

Experiments: sequences in POI recommendation

• Objective: check if our **reranking strategies improve** the performance of the recommenders

Experiments: sequences in POI recommendation

- Objective: check if our **reranking strategies improve** the performance of the recommenders
- 3 different datasets and 4 different cities: Foursquare (New York, Tokyo, generating our own routes), Semantic Trails (Petaling Jaya), Trip Builder (Rome)

Experiments: sequences in POI recommendation

- Objective: check if our **reranking strategies improve** the performance of the recommenders
- 3 different datasets and 4 different cities: Foursquare (New York, Tokyo, generating our own routes), Semantic Trails (Petaling Jaya), Trip Builder (Rome)
- Last session of the users to the test set, rest to training
Experiments: sequences in POI recommendation

- Objective: check if our **reranking strategies improve** the performance of the recommenders
- 3 different datasets and 4 different cities: Foursquare (New York, Tokyo, generating our own routes), Semantic Trails (Petaling Jaya), Trip Builder (Rome)
- Last session of the users to the test set, rest to training
- Families of recommenders: Basic, Classic, Temporal, Geo, Tour

Experiments: sequences in POI recommendation

- Objective: check if our **reranking strategies improve** the performance of the recommenders
- 3 different datasets and 4 different cities: Foursquare (New York, Tokyo, generating our own routes), Semantic Trails (Petaling Jaya), Trip Builder (Rome)
- Last session of the users to the test set, rest to training
- Families of recommenders: Basic, Classic, Temporal, Geo, Tour
- Analysis on relevance, sequential relevance, novelty, diversity, attribute evaluation and distance

72/82

• There is always at least one reranker that improves the baseline

• Distance reranker often improves the relevance

Ξ

• Categorical rerankers do not always obtain better results

72/82

• We have shown how to **generate sequences** from **POI recommendation** data

- We have shown how to **generate sequences** from **POI recommendation** data
- We proposed to **evaluate** the recommendations using **sequential metrics**

→ Ξ →

- We have shown how to **generate sequences** from **POI recommendation** data
- We proposed to **evaluate** the recommendations using **sequential metrics**
- We have shown how we can use **reranking techniques** for **generating routes** optimizing different criteria

- New perspectives for evaluating Recommender Systems
- \bigcirc Sequences in k-NN recommender systems
- Point-Of-Interest recommendation
- Sequences in POI recommendation
- 6 Conclusions and future work

Image: A matrix and a matrix

Ξ

• There is a clear **relationship** between the temporal novelty of the items and their relevance

Conclusions

• RO1: Recommender Systems evaluation

- There is a clear **relationship** between the temporal novelty of the items and their relevance
- Importance of analyzing the **anti-relevance** of the items. **Personalized** recommendations often return **anti-relevant items** for the users

Conclusions

• RO1: Recommender Systems evaluation

- There is a clear **relationship** between the temporal novelty of the items and their relevance
- Importance of analyzing the **anti-relevance** of the items. **Personalized** recommendations often return **anti-relevant items** for the users
- With the user attributes we may detect biases in specific groups of users. With item attributes we can increase the performance of the recommenders in very sparse datasets

• RO2: Sequences in *k*-NN recommenders

Conclusions (II)

• RO2: Sequences in *k*-NN recommenders

• We showed how to incorporate **sequential** information in *k*-**NN recommenders** by defining a **similarity metric** and by **reformulating** them

Conclusions (II)

• RO2: Sequences in *k*-NN recommenders

- We showed how to incorporate **sequential** information in *k*-**NN recommenders** by defining a **similarity metric** and by **reformulating** them
- Our reformulation of *k*-NN recommenders is **intuitive**, easy to explain and allows us to work with any **similarity metric**

Conclusions (II)

• RO2: Sequences in *k*-NN recommenders

- We showed how to incorporate **sequential** information in *k*-**NN recommenders** by defining a **similarity metric** and by **reformulating** them
- Our reformulation of *k*-NN recommenders is **intuitive**, easy to explain and allows us to work with any **similarity metric**
- Our proposal was **highly competitive** against other **state-of-the-art** algorithms in **different dimensions**

• RO3: Review POI algorithms

7/82

→ ∃ →

• RO3: Review POI algorithms

• Most **POI** approaches are **not comparable** as they use very different **evaluation protocols**

77/82

• RO3: Review POI algorithms

- Most **POI** approaches are **not comparable** as they use very different **evaluation protocols**
- Very few **researchers** provide the **source code** of their models

• **Cross-domain** techniques **increase** the performance of the recommenders in terms of **relevance** and **user coverage**

- **Cross-domain** techniques **increase** the performance of the recommenders in terms of **relevance** and **user coverage**
- Augment the information using the cities by distance obtain better results that using the most popular cities

- **Cross-domain** techniques **increase** the performance of the recommenders in terms of **relevance** and **user coverage**
- Augment the information using the cities by distance obtain better results that using the most popular cities
- Useful information is better than more information

• RO5: Generate routes from Location-Based Social Networks data

► 4 Ξ ►

- RO5: Generate routes from Location-Based Social Networks data
 - We can generate **meaningful routes** from LBSNs data

→ < ∃ >

- RO5: Generate routes from Location-Based Social Networks data
 - We can generate **meaningful routes** from LBSNs data
 - We can use **reranking techniques** for generating routes improving dimensions like **feature precision** and/or **distance**

• Test our novelty metrics in online environments

- Test our novelty metrics in online environments
- Test our **anti-relevance models** in domains with **implicit information**

- Test our novelty metrics in online environments
- Test our **anti-relevance models** in domains with **implicit information**
- Detect **biases in different groups** of users and in other recommendation domains

- Test our novelty metrics in online environments
- Test our **anti-relevance models** in domains with **implicit information**
- Detect **biases in different groups** of users and in other recommendation domains
- Apply our **attribute metrics** in **other domains** like music

Future Work (II)

 \bullet On sequential-based $k\text{-}\mathrm{NN}$ recommenders

ヨト・イヨト

Future Work (II)

- \bullet On sequential-based $k\text{-}\mathrm{NN}$ recommenders
 - Extend the **LCS similarity** to incorporate item **features** or the **distance** of the POIs

Future Work (II)

- \bullet On sequential-based $k\text{-}\mathrm{NN}$ recommenders
 - Extend the **LCS similarity** to incorporate item **features** or the **distance** of the POIs
 - Perform more complete analysis using different **validation** subsets
Future Work (II)

- \bullet On sequential-based $k\text{-}\mathrm{NN}$ recommenders
 - Extend the **LCS similarity** to incorporate item **features** or the **distance** of the POIs
 - Perform more complete analysis using different **validation** subsets
- On Point-of-Interest recommendation

Future Work (II)

- \bullet On sequential-based $k\text{-}\mathrm{NN}$ recommenders
 - Extend the **LCS similarity** to incorporate item **features** or the **distance** of the POIs
 - Perform more complete analysis using different **validation** subsets
- On Point-of-Interest recommendation
 - Perform a survey focusing on the **reproducibility** of the model under different **evaluation methodologies** (splits, datasets, etc.)

Future Work (II)

- \bullet On sequential-based $k\text{-}\mathrm{NN}$ recommenders
 - Extend the **LCS similarity** to incorporate item **features** or the **distance** of the POIs
 - Perform more complete analysis using different **validation** subsets
- On Point-of-Interest recommendation
 - Perform a survey focusing on the **reproducibility** of the model under different **evaluation methodologies** (splits, datasets, etc.)
 - Propose different **aggregation strategies** and use other algorithms based on **items similarities** like Factored Item Similarity Models (FISM) or Sparse Linear Methods (SLIM)

Exploring attributes, sequences, and time in Recommender Systems: From classical to Point-of-Interest recommendation

Pablo Sánchez Pérez

Under the supervision of Alejandro Bellogín Kouki

Information Retrieval Group Department of Computer Science Universidad Autónoma de Madrid, Spain

July 8, 2021

Thank you

https://bitbucket.org/PabloSanchezP

PhD dissertation July 8, 2021 ATTRIBUTES, SEQUENCES, AND TIME IN RS 82/82

Publications: journals

- Pablo Sánchez and Alejandro Bellogín. (2020). Point-of-Interest Recommender Systems: A Survey from an Experimental Perspective. Submitted to ACM Computing Surveys. Under Review (2nd round of review)
- Pablo Sánchez and Alejandro Bellogín. On the effects of aggregation strategies for different groups of users in venue recommendation. Information Processing and Management, 58(5):102609, 2021.
- Pablo Sánchez and Alejandro Bellogín. Applying reranking strategies to route recommendation using sequence-aware evaluation. User Modeling and User-Adapted Interaction, 30(4):659-725, 2020
- Pablo Sánchez and Alejandro Bellogín. Time and sequence awareness in similarity metrics for recommendation. Information Processing and Management, 57(3):102228, 2020
- **Pablo Sánchez** and Alejandro Bellogín. Building user profiles based on sequences for content and collaborative filtering. *Information Processing and Management*, 56(1):192-211, 2019.
- Alejandro Bellogín and Pablo Sánchez. Collaborative filtering based on subsequence matching: A new approach. *Information Sciences*, 418:432-446, 2017

・ 同 ト ・ ヨ ト ・ ヨ ト

Publications: conferences

- Pablo Sánchez and Alejandro Bellogín. Time-aware novelty metrics for recommender systems. In Gabriella Pasi, Benjamin Piwowarski, Leif Azzopardi, and Allan Hanbury, editors, Advances in Information Retrieval -40th European Conference on IR Research, ECIR 2018, Grenoble, France, March 26-29, 2018, Proceedings, volume 10772 of Lecture Notes in Computer Science, pages 357-370. Springer, 2018
- Pablo Sánchez and Alejandro Bellogín. Measuring anti-relevance: a study on when recommendation algorithms produce bad suggestions. In Sole Pera, Michael D. Ekstrand, Xavier Amatriain, and John O'Donovan, editors, Proceedings of the 12th ACM Conference on Recommender Systems, RecSys 2018, Vancouver, BC, Canada, October. 2-7, 2018, pages 367-371. ACM, 2018
- Pablo Sánchez and Alejandro Bellogín. Attribute-based evaluation for recommender systems: incorporating user and item attributes in evaluation metrics. In Toine Bogers, Alan Said, Peter Brusilovsky, and Domonkos Tikk, editors, *Proceedings of the 13th ACM Conference on Recommender Systems*, RecSys 2019, Copenhagen, Denmark, September 16-20, 2019., pages 378-382. ACM, 2019

- Adomavicius, G. and Tuzhilin, A. (2005). Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. *IEEE Trans. Knowl. Data Eng.*, 17(6):734–749.
- Bao, J., Zheng, Y., and Mokbel, M. F. (2012).
 Location-based and preference-aware recommendation using sparse geo-social networking data.
 In Cruz, I. F., Knoblock, C. A., Kröger, P., Tanin, E., and Widmayer, P., editors, SIGSPATIAL 2012 International Conference on Advances in Geographic Information Systems (formerly known as GIS), SIGSPATIAL'12, Redondo Beach, CA, USA, November 7-9, 2012, pages 199–208. ACM.

- Bellogín, A. and Sánchez, P. (2017).
 Collaborative filtering based on subsequence matching: A new approach.
 Inf. Sci., 418:432–446.
 - Dooms, S., Bellogín, A., Pessemier, T. D., and Martens, L. (2016).

A framework for dataset benchmarking and its application to a new movie rating dataset.

ACM TIST, 7(3):41:1-41:28.

- Feng, S., Li, X., Zeng, Y., Cong, G., Chee, Y. M., and Yuan, Q. (2015).

Personalized ranking metric embedding for next new POI recommendation.

In Yang, Q. and Wooldridge, M. J., editors, *Proceedings of the Twenty-Fourth International Joint Conference on*

1

► < E ► < E ►</p>

Artificial Intelligence, IJCAI 2015, Buenos Aires, Argentina, July 25-31, 2015, pages 2069–2075. AAAI Press.

- Gao, R., Li, J., Li, X., Song, C., and Zhou, Y. (2018).
 A personalized point-of-interest recommendation model via fusion of geo-social information. *Neurocomputing*, 273:159–170.
- He, R. and McAuley, J. (2016). Fusing similarity models with markov chains for sparse sequential recommendation.

In Bonchi, F., Domingo-Ferrer, J., Baeza-Yates, R. A., Zhou, Z., and Wu, X., editors, *IEEE 16th International Conference on Data Mining, ICDM 2016, December 12-15,* 2016, Barcelona, Spain, pages 191–200. IEEE.

References IV

- Levandoski, J. J., Sarwat, M., Eldawy, A., and Mokbel, M. F. (2012).
 - LARS: A location-aware recommender system.

In Kementsietsidis, A. and Salles, M. A. V., editors, *IEEE* 28th International Conference on Data Engineering (ICDE 2012), Washington, DC, USA (Arlington, Virginia), 1-5 April, 2012, pages 450–461. IEEE Computer Society.

Li, H., Ge, Y., Hong, R., and Zhu, H. (2016). Point-of-interest recommendations: Learning potential check-ins from friends.

In Krishnapuram, B., Shah, M., Smola, A. J., Aggarwal,
C. C., Shen, D., and Rastogi, R., editors, Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, August 13-17, 2016, pages 975–984. ACM. Li, X., Cong, G., Li, X., Pham, T. N., and Krishnaswamy, S. (2015).

Rank-geofm: A ranking based geographical factorization method for point of interest recommendation. In Baeza-Yates, R. A., Lalmas, M., Moffat, A., and

Ribeiro-Neto, B. A., editors, Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval, Santiago, Chile, August 9-13, 2015, pages 433–442. ACM.

Lian, D., Zhao, C., Xie, X., Sun, G., Chen, E., and Rui, Y. (2014).
 Geomf: joint geographical modeling and matrix factorization for point-of-interest recommendation.
 In Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W., and Ghani, R., editors, *The 20th ACM SIGKDD*

International Conference on Knowledge Discovery and Data Mining, KDD '14, New York, NY, USA - August 24 - 27, 2014, pages 831–840. ACM.

Liu, B., Fu, Y., Yao, Z., and Xiong, H. (2013). Learning geographical preferences for point-of-interest recommendation.

In Dhillon, I. S., Koren, Y., Ghani, R., Senator, T. E., Bradley, P., Parekh, R., He, J., Grossman, R. L., and Uthurusamy, R., editors, *The 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2013, Chicago, IL, USA, August 11-14, 2013*, pages 1043–1051. ACM.

伺下 イヨト イヨト

References VII

- Ma, C., Zhang, Y., Wang, Q., and Liu, X. (2018).
 Point-of-interest recommendation: Exploiting self-attentive autoencoders with neighbor-aware influence.
 In Cuzzocrea, A., Allan, J., Paton, N. W., Srivastava, D., Agrawal, R., Broder, A. Z., Zaki, M. J., Candan, K. S., Labrinidis, A., Schuster, A., and Wang, H., editors, Proceedings of the 27th ACM International Conference on Information and Knowledge Management, CIKM 2018, Torino, Italy, October 22-26, 2018, pages 697–706. ACM.
 - Miller, H. J. (2004).

Tobler's first law and spatial analysis. Annals of the Association of American Geographers,

94(2):284-289.

References VIII

- Qian, T., Liu, B., Nguyen, Q. V. H., and Yin, H. (2019).
 Spatiotemporal representation learning for translation-based POI recommendation.
 ACM Trans. Inf. Syst., 37(2):18:1–18:24.
- Ren, X., Song, M., E, H., and Song, J. (2017). Context-aware probabilistic matrix factorization modeling for point-of-interest recommendation. *Neurocomputing*, 241:38–55.

Robertson, S. E. (1997). Readings in information retrieval.

In Sparck Jones, K. and Willett, P., editors, *Readings in Information Retrieval*, chapter The Probability Ranking Principle in IR, pages 281–286. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.

References IX

Sánchez, P. and Bellogín, A. (2018a).
Measuring anti-relevance: a study on when
recommendation algorithms produce bad suggestions.
In Pera, S., Ekstrand, M. D., Amatriain, X., and
O'Donovan, J., editors, Proceedings of the 12th ACM
Conference on Recommender Systems, RecSys 2018,
Vancouver, BC, Canada, October 2-7, 2018, pages 367–371.
ACM.

Sánchez, P. and Bellogín, A. (2018b).
 Time-aware novelty metrics for recommender systems.
 In Pasi, G., Piwowarski, B., Azzopardi, L., and Hanbury,
 A., editors, Advances in Information Retrieval - 40th
 European Conference on IR Research, ECIR 2018,
 Grenoble, France, March 26-29, 2018, Proceedings, volume

10772 of *Lecture Notes in Computer Science*, pages 357–370. Springer.

Sánchez, P. and Bellogín, A. (2019a). Attribute-based evaluation for recommender systems: incorporating user and item attributes in evaluation metrics.

In Bogers, T., Said, A., Brusilovsky, P., and Tikk, D., editors, *Proceedings of the 13th ACM Conference on Recommender Systems, RecSys 2017, Copenhagen, Denmark, September 16-20, 2019.*, pages 378–382. ACM.

Sánchez, P. and Bellogín, A. (2019b). Building user profiles based on sequences for content and collaborative filtering.

Inf. Process. Manage., 56(1):192–211.

82/82

References XI

- Sánchez, P. and Bellogín, A. (2020a).
 Applying reranking strategies to route recommendation using sequence-aware evaluation.
 User Model. User Adapt. Interact., 30(4):659–725.
- Sánchez, P. and Bellogín, A. (2020b). Time and sequence awareness in similarity metrics for recommendation.

Inf. Process. Manag., 57(3):102228.

 Si, Y., Zhang, F., and Liu, W. (2019).
 An adaptive point-of-interest recommendation method for location-based social networks based on user activity and spatial features.

Knowl.-Based Syst., 163:267–282.

Sánchez, P. and Bellogín, A. (2021). On the effects of aggregation strategies for different groups of users in venue recommendation. Information Processing and Management, 58(5):102609. Vargas, S. and Castells, P. (2011). Rank and relevance in novelty and diversity metrics for recommender systems. In Mobasher, B., Burke, R. D., Jannach, D., and Adomavicius, G., editors, Proceedings of the 2011 ACM Conference on Recommender Systems, RecSys 2011, Chicago, IL, USA, October 23-27, 2011, pages 109–116. ACM.

References XIII

Wang, H., Shen, H., Ouyang, W., and Cheng, X. (2018). Exploiting poi-specific geographical influence for point-of-interest recommendation.

In Lang, J., editor, Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence, IJCAI 2018, July 13-19, 2018, Stockholm, Sweden, pages 3877–3883. ijcai.org.

Yang, C., Bai, L., Zhang, C., Yuan, Q., and Han, J. (2017). Bridging collaborative filtering and semi-supervised learning: A neural approach for POI recommendation. In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Halifax, NS, Canada, August 13 - 17, 2017, pages 1245–1254. ACM.

伺下 イヨト イヨト

References XIV

Yang, D., Zhang, D., and Qu, B. (2016). Participatory cultural mapping based on collective behavior data in location-based social networks. *ACM TIST*, 7(3):30:1–30:23.

Yang, D., Zhang, D., Yu, Z., and Wang, Z. (2013). A sentiment-enhanced personalized location recommendation system.

In Stumme, G. and Hotho, A., editors, 24th ACM Conference on Hypertext and Social Media (part of ECRC), HT '13, Paris, France - May 02 - 04, 2013, pages 119–128. ACM.

References XV

Ye, M., Yin, P., Lee, W., and Lee, D. L. (2011). Exploiting geographical influence for collaborative point-of-interest recommendation.

In Ma, W., Nie, J., Baeza-Yates, R. A., Chua, T., and Croft, W. B., editors, *Proceeding of the 34th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2011, Beijing, China, July* 25-29, 2011, pages 325–334. ACM.

Yin, H., Cui, B., Chen, L., Hu, Z., and Zhang, C. (2015). Modeling location-based user rating profiles for personalized recommendation. *TKDD*, 9(3):19:1–19:41.

References XVI

Ying, H., Wu, J., Xu, G., Liu, Y., Liang, T., Zhang, X., and Xiong, H. (2019).

Time-aware metric embedding with asymmetric projection for successive POI recommendation. *World Wide Web*, 22(5):2209–2224.

Ying, J. J., Kuo, W., Tseng, V. S., and Lu, E. H. (2014). Mining user check-in behavior with a random walk for urban point-of-interest recommendations. *ACM TIST*, 5(3):40:1–40:26.

 Yuan, Q., Cong, G., Ma, Z., Sun, A., and Magnenat-Thalmann, N. (2013).
 Time-aware point-of-interest recommendation.
 In Jones, G. J. F., Sheridan, P., Kelly, D., de Rijke, M., and Sakai, T., editors, *The 36th International ACM SIGIR* conference on research and development in Information Retrieval, SIGIR '13, Dublin, Ireland - July 28 - August 01, 2013, pages 363–372. ACM.

Yuan, Q., Cong, G., and Sun, A. (2014).
 Graph-based point-of-interest recommendation with geographical and temporal influences.
 In Li, J., Wang, X. S., Garofalakis, M. N., Soboroff, I., Suel, T., and Wang, M., editors, *Proceedings of the 23rd ACM International Conference on Conference on Information and Knowledge Management, CIKM 2014, Shanghai, China, November 3-7, 2014*, pages 659–668. ACM.

References XVIII

Zhang, J. and Chow, C. (2015).

Geosoca: Exploiting geographical, social and categorical correlations for point-of-interest recommendations.

In Baeza-Yates, R. A., Lalmas, M., Moffat, A., and Ribeiro-Neto, B. A., editors, *Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval, Santiago, Chile, August 9-13, 2015*, pages 443–452. ACM.

- Zhao, S., Zhao, T., King, I., and Lyu, M. R. (2017).
 Geo-teaser: Geo-temporal sequential embedding rank for point-of-interest recommendation.
 In Barrett, R., Cummings, R., Agichtein, E., and Gabrilovich, E., editors, *Proceedings of the 26th International Conference on World Wide Web Companion, International Conference on World Wide Web Companion, Conference on World Web Companion, Conference on Web Companion, Conference on Web Conference on Web Companion, Conference on Web Conference on We*
 - Perth, Australia, April 3-7, 2017, pages 153–162. ACM.

- Zhao, S., Zhao, T., Yang, H., Lyu, M. R., and King, I. (2016).
 - STELLAR: spatial-temporal latent ranking for successive point-of-interest recommendation.
 - In Schuurmans, D. and Wellman, M. P., editors,
 - Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, February 12-17, 2016, Phoenix, Arizona, USA, pages 315–322. AAAI Press.

Point-Of-Interest recommendation: a survey

Information usage evolution per year

Point-Of-Interest recommendation: a survey

Evaluation methodology evolution per year

Point-Of-Interest recommendation: a survey

Algorithm methodology evolution per year

Experiments: POI recommendation. nDCG@5

82/82

포카 포

Experiments: POI recommendation (2). nDCG@5

PhD dissertation July 8, 2021 ATTRIBUTES, SEQUENCES, AND TIME IN RS

82/82

Table: Performance in terms of nDCG@5 of the Popularity recommender in all cities in both Tourists and Locals.

City	All Users	Tourists	Locals	Δ Tourists (%)	Δ Locals (%)
Istanbul	0.054	0.064	0.048	19.04	-9.77
Jakarta	0.066	0.091	0.053	38.33	-19.92
Kuala Lumpur	0.066	0.077	0.060	17.34	-8.46
Mexico City	0.041	0.059	0.034	45.69	-15.70
Moscow	0.027	0.037	0.026	34.02	-4.48
Santiago	0.051	0.067	0.044	30.47	-13.21
São Paulo	0.053	0.061	0.031	14.85	-40.33
Tokyo	0.069	0.106	0.056	53.48	-18.73

Experiments: POI recommendation. Santiago

Figure: Results of tourists (7.62% of the users) and local (72.43% of the users) users in Santiago.

		New York				Rome		Petaling Java			
Family	Reranker	$nDCG_{s}$	FP_s	Dist	$nDCG_s$	FP_s	Dist	$nDCG_s$	FPs	Dist	
	Baseline	0.402	0.284	43.9	0.447	0.464	5.0	0.404	0.245	35.0	
	f_{seq}^{rnd}	0.383	0.297	28.0	0.402	0.452	5.9	0.387	0.274	29.5	
	f_{seg}^{dist}	0.396	▲0.308	▲ 4.1	0.469	† 0.474	▲ 1.4	† 0.409	▲ 0.296	▲7 .2	
Basic	f_{seq}^{feat}	0.400	0.267	33.3	0.422	0.371	5.0	0.402	0.267	33.2	
	f_{sea}^{item}	0.399	0.279	37.8	†0.473	0.469	1.8	0.408	0.262	19.5	
	f_{seq}^{rec}	† 0.406	0.298	42.4	0.422	0.452	6.0	0.407	0.271	26.3	
	f_{seq}^{lcs}	0.395	0.285	17.8	0.440	0.446	2.3	0.403	0.274	14.8	
	f_{seq}^{stree}	0.402	0.289	38.4	0.446	0.466	3.2	0.403	0.263	25.9	
	f_{seq}^{oracle}	▲ 0.468	0.296	43.2	▲ 0.614	▲ 0.482	4.2	▲ 0.456	0.247	34.2	
	Baseline	0.404	0.285	45.3	0.447	0.460	6.3	0.408	0.270	30.0	
	f_{seq}^{rnd}	0.382	0.292	30.3	0.403	0.450	5.9	0.394	0.278	30.7	
	f_{seq}^{dist}	0.395	0.309	▲ 4.2	0.468	†0.475	▲1.4	†0.410	▲ 0.294	▲7 .4	
Classic	f_{seq}^{feat}	0.398	0.267	33.5	0.424	0.373	5.0	0.402	0.269	34.0	
	f_{seg}^{item}	0.400	0.276	38.0	†0.476	0.468	1.8	0.409	0.268	18.5	
	f_{seq}^{rec}	† 0.406	0.300	42.4	0.422	0.452	6.0	0.407	0.273	26.5	
	f_{seq}^{lcs}	0.395	0.284	17.9	0.440	0.447	2.3	0.405	0.279	13.2	
	f_{seq}^{stree}	0.404	0.294	38.6	0.447	0.465	3.7	0.405	0.275	22.1	
	f_{seq}^{oracle}	▲ 0.468	0.300	44.3	▲ 0.612	▲ 0.482	4.9	▲0.455	0.269	29.0	
	Baseline	† 0.404	0.302	42.4	0.447	†0.469	4.9	†0.416	0.285	26.6	
	f_{seq}^{rnd}	0.379	0.317	25.3	0.409	0.449	6.0	0.383	0.308	28.1	
	f_{seq}^{dist}	0.389	▲ 0.319	▲3.5	0.464	0.468	▲1.4	0.412	▲ 0.326	▲5.6	
Temporal	f_{seq}^{feat}	0.388	0.272	30.6	0.421	0.375	5.0	0.397	0.291	30.2	
	f_{seg}^{item}	0.400	0.293	37.2	†0.474	0.465	1.9	0.412	0.283	17.5	
	f_{seq}^{rec}	0.403	0.309	41.5	0.422	0.452	6.1	0.407	0.292	26.1	
	f_{seq}^{lcs}	0.388	0.314	10.8	0.441	0.447	2.3	0.407	0.311	10.9	
	f_{seq}^{stree}	0.398	0.311	29.6	0.445	0.468	3.1	0.411	0.301	17.3	
	f_{seq}^{oracle}	▲ 0.462	0.308	39.9	▲ 0.608	▲ 0.482	4.1	▲ 0.457	0.287	25.8	

・ロト ・雪 ト ・ヨ ト ・ ヨ ト

PhD dissertation July 8, 2021

ATTRIBUTES, SEQUENCES, AND TIME IN RS

1

			New York			Rome		Pe	taling Java		-
Family	Reranker	$nDCG_{s}$	FP_s	Dist	$nDCG_s$	FP_s	Dist	$nDCG_s$	FP_s	Dist	
	Baseline	0.402	0.284	43.9	0.447	0.464	5.0	0.404	0.245	35.0	-
	f_{sea}^{rnd}	0.383	0.297	28.0	0.402	0.452	5.9	0.387	0.274	29.5	
	f_{seq}^{dist}	0.396	▲ 0.308	▲ 4.1	0.469	†0.4 7 4	▲1.4	†0.409	▲ 0.296	▲ 7.2	$\overline{}$
Basic	f feat	0.400	0.267	33.3	0.422	0.371	5.0	0.402	0.267	33.2	
	f_{aaa}^{item}	0.399	0.279	37.8	†0.473	0.469	1.8	0.408	0.262	19.5	
	frec frec	† 0.406	0.298	42.4	0.422	0.452	6.0	0.407	0.271	26.3	
	f_{seq}^{lcs}	0.395	0.285	17.8	0.440	0.446	2.3	0.403	0.274	14.8	
	f_{sea}^{stree}	0.402	0.289	38.4	0.446	0.466	3.2	0.403	0.263	25.9	
	f_{seq}^{oracle}	▲ 0.468	0.296	43.2	▲ 0.614	▲ 0.482	4.2	▲ 0.456	0.247	34.2	
	Baseline	0.404	0.285	45.3	0.447	0.460	6.3	0.408	0.270	30.0	-
	f_{sea}^{rnd}	0.382	0.292	30.3	0.403	0.450	5.9	0.394	0.278	30.7	
(f_{seq}^{dist}	0.395	0.309	▲ 4.2	0.468	†0.475	▲ 1.4	† 0.410	▲ 0.294	▲7 .4	
Classic	f_{seq}^{feat}	0.398	0.267	33.5	0.424	0.373	5.0	0.402	0.269	34.0	
	f_{sea}^{item}	0.400	0.276	38.0	†0. 476	0.468	1.8	0.409	0.268	18.5	
	f_{seq}^{rec}	† 0.406	0.300	42.4	0.422	0.452	6.0	0.407	0.273	26.5	
	f_{seq}^{lcs}	0.395	0.284	17.9	0.440	0.447	2.3	0.405	0.279	13.2	
	f_{seq}^{stree}	0.404	0.294	38.6	0.447	0.465	3.7	0.405	0.275	22.1	
	f_{seq}^{oracle}	▲ 0.468	0.300	44.3	▲ 0.612	▲ 0.482	4.9	▲ 0.455	0.269	29.0	
	Baseline	† 0.404	0.302	42.4	0.447	†0. 46 9	4.9	† 0.416	0.285	26.6	-
	f_{seq}^{rnd}	0.379	0.317	25.3	0.409	0.449	6.0	0.383	0.308	28.1	
(f_{seq}^{dist}	0.389	▲ 0.319	▲3.5	0.464	0.468	▲1.4	0.412	▲ 0.326	▲5.6	
Temporal	f_{seq}^{feat}	0.388	0.272	30.6	0.421	0.375	5.0	0.397	0.291	30.2	
1	f_{seg}^{item}	0.400	0.293	37.2	†0.474	0.465	1.9	0.412	0.283	17.5	
	f_{seq}^{rec}	0.403	0.309	41.5	0.422	0.452	6.1	0.407	0.292	26.1	
	f_{seq}^{lcs}	0.388	0.314	10.8	0.441	0.447	2.3	0.407	0.311	10.9	
	f_{seq}^{stree}	0.398	0.311	29.6	0.445	0.468	3.1	0.411	0.301	17.3	
	f_{seq}^{oracle}	▲ 0.462	0.308	39.9	▲0.608	▲ 0.482	4.1	▲ 0.457	0.287	25.8	

イロト 人間 トメヨトメヨト

PhD dissertation July 8, 2021

ATTRIBUTES, SEQUENCES, AND TIME IN RS

Э

		New York				Rome		Petaling Java			
Family	Reranker	nDCG _s	FP _s	Dist	$nDCG_s$	FP _s	Dist	nDCGs	FP _s	Dist	
	Baseline	0.402	0.284	43.9	0.447	0.464	5.0	0.404	0.245	35.0	
	f_{seq}^{rnd}	0.383	0.297	28.0	0.402	0.452	5.9	0.387	0.274	29.5	
	f_{seq}^{dist}	0.396	▲0.308	▲ 4.1	0.469	†0.474	▲ 1.4	†0.409	▲ 0. 2 96	▲7.2	
Basic	f_{sea}^{feat}	0.400	0.267	33.3	0.422	0.371	5.0	0.402	0.267	33.2	
	f_{eea}^{item}	0.399	0.279	37.8	† 0.473	0.469	1.8	0.408	0.262	19.5	
	f_{seq}^{rec}	†0.406	0.298	42.4	0.422	0.452	6.0	0.407	0.271	26.3	
	f_{seq}^{lcs}	0.395	0.285	17.8	0.440	0.446	2.3	0.403	0.274	14.8	
	f_{seq}^{stree}	0.402	0.289	38.4	0.446	0.466	3.2	0.403	0.263	25.9	
	f_{seq}^{oracle}	▲ 0.468	0.296	43.2	▲ 0.614	▲ 0.482	4.2	▲0.456	0.247	34.2	
	Baseline	0.404	0.285	45.3	0.447	0.460	6.3	0.408	0.270	30.0	
	f_{sea}^{rnd}	0.382	0.292	30.3	0.403	0.450	5.9	0.394	0.278	30.7	
	f_{sea}^{dist}	0.395	0.309	▲ 4.2	0.468	†0.475	▲ 1.4	† 0.410	▲ 0.294	▲7 .4	
Classic	f_{seq}^{feat}	0.398	0.267	33.5	0.424	0.373	5.0	0.402	0.269	34.0	
	f_{sea}^{item}	0.400	0.276	38.0	†0.476	0.468	1.8	0.409	0.268	18.5	
	f_{seq}^{rec}	† 0.406	0.300	42.4	0.422	0.452	6.0	0.407	0.273	26.5	
	f_{seq}^{lcs}	0.395	0.284	17.9	0.440	0.447	2.3	0.405	0.279	13.2	
	f_{seq}^{stree}	0.404	0.294	38.6	0.447	0.465	3.7	0.405	0.275	22.1	
	f_{seq}^{oracle}	▲ 0.468	0.300	44.3	▲ 0.612	▲ 0.482	4.9	▲0.455	0.269	29.0	
	Baseline	† 0.404	0.302	42.4	0.447	† 0.46 9	4.9	† 0.416	0.285	26.6	
	f_{seq}^{rnd}	0.379	0.317	25.3	0.409	0.449	6.0	0.383	0.308	28.1	
	f_{seg}^{dist}	0.389	▲ 0.319	▲3.5	0.464	0.468	▲1.4	0.412	▲ 0.326	▲5.6	
Temporal	f_{seq}^{feat}	0.388	0.272	30.6	0.421	0.375	5.0	0.397	0.291	30.2	
	f_{sea}^{item}	0.400	0.293	37.2	†0.474	0.465	1.9	0.412	0.283	17.5	
	f_{seq}^{rec}	0.403	0.309	41.5	0.422	0.452	6.1	0.407	0.292	26.1	
	f_{sea}^{lcs}	0.388	0.314	10.8	0.441	0.447	2.3	0.407	0.311	10.9	
	f_{seq}^{stree}	0.398	0.311	29.6	0.445	0.468	3.1	0.411	0.301	17.3	
	f_{seq}^{oracle}	▲ 0.462	0.308	39.9	▲0.608	▲ 0.482	4.1	▲0.457	0.287	25.8	

ב ¢) <

ATTRIBUTES, SEQUENCES, AND TIME IN RS

82/82

		1	New York			Rome		Petaling Jaya		
Family	Reranker	$\rm nDCG_s$	FP_s	Dist	$\rm nDCG_s$	FP_s	Dist	$\rm nDCG_s$	FP_s	Dist
	Baseline	0.405	0.306	43.9	0.427	0.457	5.6	0.406	0.286	30.0
	f_{seq}^{rnd}	0.378	0.307	22.5	0.397	0.447	5.9	0.390	0.307	25.1
	f_{seq}^{dist}	0.385	0.315	▲3.6	0.456	† 0.468	▲ 1.4	0.405	▲ 0.315	▲ 5.8
Geo	f_{seq}^{feat}	0.393	0.281	32.8	0.414	0.364	5.3	0.397	0.282	26.8
	f_{seg}^{item}	0.402	0.291	37.1	†0.467	0.466	2.1	†0.412	0.270	18.8
	f_{seq}^{rec}	†0.405	0.311	42.0	0.417	0.453	6.0	0.407	0.290	25.8
	f_{seq}^{lcs}	0.390	0.311	11.9	0.426	0.440	2.2	0.401	0.308	10.5
	f_{seq}^{stree}	0.402	0.321	31.3	0.431	0.458	3.5	0.404	0.302	19.4
	f_{seq}^{oracle}	▲ 0.464	0.314	41.7	▲ 0.586	▲ 0.472	4.6	▲ 0.449	0.287	28.8
	Baseline	0.391	0.279	44.9	†0. 477	0.473	2.0	0.403	0.240	28.4
	f_{seq}^{rnd}	0.364	0.305	23.9	0.400	0.448	5.7	0.390	0.291	30.8
	f_{seq}^{dist}	0.381	0.311	▲ 4.2	0.467	†0.474	▲ 1.4	$^{\dagger 0.412}$	▲0.309	▲7 .1
Tour	f_{seq}^{feat}	0.374	0.277	20.9	0.420	0.359	5.0	0.401	0.278	31.6
	f_{sea}^{item}	0.397	0.283	38.1	0.477	0.470	1.8	0.406	0.271	16.9
	f_{seq}^{rec}	† 0.403	0.289	41.4	0.427	0.451	5.8	0.408	0.273	26.6
	f_{seq}^{lcs}	0.382	▲ 0.312	12.0	0.438	0.446	2.1	0.406	0.290	13.9
	$f_{seq}^{stre\acute{e}}$	0.386	0.295	32.4	0.457	0.466	2.4	0.403	0.272	21.5
	f_{seq}^{oracle}	▲ 0.442	0.285	44.4	▲0.600	▲ 0.482	3.0	▲ 0.455	0.244	28.0
Experiments: Sequences in POI recommendation

		New York			Rome			Petaling Jaya		
Family	Reranker	$\rm nDCG_s$	FP_s	Dist	$\rm nDCG_{s}$	FP_s	Dist	$\rm nDCG_s$	FP_s	Dist
	Baseline	0.405	0.306	43.9	0.427	0.457	5.6	0.406	0.286	30.0
	f_{seq}^{rnd}	0.378	0.307	22.5	0.397	0.447	5.9	0.390	0.307	25.1
	f_{seq}^{dist}	0.385	0.315	▲3.6	0.456	† 0.468	▲ 1.4	0.405	▲ 0.315	▲ 5.8
Geo	f_{seq}^{feat}	0.393	0.281	32.8	0.414	0.364	5.3	0.397	0.282	26.8
	f_{seq}^{item}	0.402	0.291	37.1	†0.467	0.466	2.1	†0.412	0.270	18.8
	f_{seq}^{rec}	† 0.405	0.311	42.0	0.417	0.453	6.0	0.407	0.290	25.8
	f_{seq}^{lcs}	0.390	0.311	11.9	0.426	0.440	2.2	0.401	0.308	10.5
	f_{sea}^{stree}	0.402	0.321	31.3	0.431	0.458	3.5	0.404	0.302	19.4
	f_{seq}^{oracle}	▲ 0.464	0.314	41.7	▲ 0.586	▲ 0.472	4.6	▲ 0.449	0.287	28.8
	Baseline	0.391	0.279	44.9	†0. 477	0.473	2.0	0.403	0.240	28.4
	f_{seq}^{rnd}	0.364	0.305	23.9	0.400	0.448	5.7	0.390	0.291	30.8
(f_{seq}^{dist}	0.381	0.311	▲ 4.2	0.467	† 0.474	▲ 1.4	$\dagger 0.412$	▲ 0.309	▲7 .1
Tour	f_{seq}^{feat}	0.374	0.277	20.9	0.420	0.359	5.0	0.401	0.278	31.6
	f_{seg}^{item}	0.397	0.283	38.1	0.477	0.470	1.8	0.406	0.271	16.9
	f_{seq}^{rec}	† 0.403	0.289	41.4	0.427	0.451	5.8	0.408	0.273	26.6
	f_{seq}^{lcs}	0.382	▲ 0.312	12.0	0.438	0.446	2.1	0.406	0.290	13.9
	f_{sea}^{stree}	0.386	0.295	32.4	0.457	0.466	2.4	0.403	0.272	21.5
	f_{seq}^{oracle}	▲ 0.442	0.285	44.4	▲0.600	▲ 0.482	3.0	▲ 0.455	0.244	28.0

Experiments: Sequences in POI recommendation

		New York			Rome			Petaling Jaya			
Family	Reranker	$\rm nDCG_s$	FP_s	Dist	$\rm nDCG_{s}$	FP_s	Dist	$\rm nDCG_s$	FP_s	Dist	
Geo	Baseline	0.405	0.306	43.9	0.427	0.457	5.6	0.406	0.286	30.0	
	f_{seq}^{rnd}	0.378	0.307	22.5	0.397	0.447	5.9	0.390	0.307	25.1	
	f_{seq}^{dist}	0.385	0.315	▲3.6	0.456	† 0.468	▲ 1.4	0.405	▲ 0.315	▲5.8	
	f_{seq}^{feat}	0.393	0.281	32.8	0.414	0.364	5.3	0.397	0.282	26.8	
	f_{sea}^{item}	0.402	0.291	37.1	†0.467	0.466	2.1	†0.412	0.270	18.8	
	f_{seq}^{rec}	†0.405	0.311	42.0	0.417	0.453	6.0	0.407	0.290	25.8	
	f_{seq}^{lcs}	0.390	0.311	11.9	0.426	0.440	2.2	0.401	0.308	10.5	
	f_{seq}^{stree}	0.402	0.321	31.3	0.431	0.458	3.5	0.404	0.302	19.4	J
	f_{seq}^{oracle}	▲ 0.464	0.314	41.7	▲ 0.586	▲ 0.472	4.6	▲ 0.449	0.287	28.8	
Tour	Baseline	0.391	0.279	44.9	†0. 477	0.473	2.0	0.403	0.240	28.4	
	f_{seq}^{rnd}	0.364	0.305	23.9	0.400	0.448	5.7	0.390	0.291	30.8	
	f_{seq}^{dist}	0.381	0.311	▲ 4.2	0.467	† 0.474	▲ 1.4	†0.412	▲ 0.309	▲7 .1	
	f_{seq}^{feat}	0.374	0.277	20.9	0.420	0.359	5.0	0.401	0.278	31.6	
	f_{sea}^{item}	0.397	0.283	38.1	0.477	0.470	1.8	0.406	0.271	16.9	
	f_{seq}^{rec}	† 0.403	0.289	41.4	0.427	0.451	5.8	0.408	0.273	26.6	
	f_{seq}^{lcs}	0.382	▲ 0.312	12.0	0.438	0.446	2.1	0.406	0.290	13.9	
	$f_{seq}^{stre\hat{e}}$	0.386	0.295	32.4	0.457	0.466	2.4	0.403	0.272	21.5	
	f_{seq}^{oracle}	▲ 0.442	0.285	44.4	▲0.600	▲ 0.482	3.0	▲ 0.455	0.244	28.0	

32/82